Skip to main content
Log in

Different rheological behaviours of cellulose/tetrabutylammonium acetate/dimethyl sulfoxide/water mixtures

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Tetrabutylammonium acetate (TBAA) solution in dimethyl sulfoxide (DMSO) can dissolve cellulose efficient at a mild condition and it seems to have favorable properties for cellulose molding applications, e.g. fiber spinning. However, if water or other hydrogen bond donors are present, the solvent's ability to dissolve cellulose is greatly reduced. A non-solvent (water) post-added to the cellulose/TBAA/DMSO solutions caused significant changes in flow properties. Specifically, the rheological behaviours of distinct phases formed in 6–8%(w/w) cellulose/TBAA/DMSO solutions due to the addition of water was investigated. With the water concentrations increased, a sol–gel transition had been detected. The Cox–Merz rule and Cross model have been used to fit the rheological data. We explain the sol–gel transformation in cellulose/TBAA/DMSO/water solutions by percolation theory. Meanwhile, a mechanism of cellulose aggregation and the sol–gel transitions have been proposed: water can effectively break the cellulose–Ac H-bonds and lead to the formation of cellulose–cellulose H-bonds, which grow the aggregation of cellulose, form a network structure in the whole sample and then result in gelation.

Graphic abstract

Sol-gel transition of cellulose/tetrabutylammonium acetate/dimethyl sulfoxide solutions with different water concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bai L, Huan S, Xiang W, Rojas OJ (2018) Pickering emulsions by combining cellulose nanofibrils and nanocrystals: phase behavior and depletion stabilization. Green Chem 20:1571–1582

    CAS  Google Scholar 

  • Bengtsson J, Olsson C, Hedlund A, Kohnke T, Bialik E (2017) Understanding the inhibiting effect of small-molecule hydrogen bond donors on the solubility of cellulose in tetrabutylammonium acetate/DMSO. J Phys Chem B 121:11241–11248

    PubMed  CAS  Google Scholar 

  • Boukany PE, Hu YT, Wang S-Q (2008) Observations of wall slip and shear banding in an entangled DNA solution. Macromolecules 41(7):2644–2650

    CAS  Google Scholar 

  • Broadbent SR, Hammersley JM (1957) Percolation processes: I. Crystals and mazes. Math Proc Cambridge Philos Soc 53:629–641d

    CAS  Google Scholar 

  • Chang H, Chien A-T, Liu HC, Wang P-H, Newcomb BA, Kumar S (2015) Gel spinning of polyacrylonitrile/cellulose nanocrystal composite fibers. ACS Biomater Sci Eng1:610–616

    CAS  Google Scholar 

  • Chen X, Liang S, Wang S-W, Colby RH (2018) Linear viscoelastic response and steady shear viscosity of native cellulose in 1-ethyl-3-methylimidazolium methylphosphonate. J Rheol 62:81–87

    CAS  Google Scholar 

  • Chen X, Zhang Y, Wang H, Wang S-W, Liang S, Colby RH (2011) Solution rheology of cellulose in 1-butyl-3-methyl imidazolium chlorid. J Rheol 55:485–494

    CAS  Google Scholar 

  • Clasen C, Kulicke WM (2001) Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives. Prog Polymer Sci 6:1839–1919

    Google Scholar 

  • Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polymer Sci 28:619–622

    CAS  Google Scholar 

  • Cross MM (1965) Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Sci 20:417–437

    CAS  Google Scholar 

  • Djabourov M, Leblond J, Papon P (1988) Gelation of aqueous gelatin solutions. II. Rheology of the sol-gel transition. J Phys 49:333–343

    CAS  Google Scholar 

  • Donkor ON, Henriksson A, Vasiljevic T, Shah NP (2007) Rheological properties and sensory characteristics of set-type soy yogurt. J Agric Food Chem 55:9868–9876

    PubMed  CAS  Google Scholar 

  • Dorris A, Gray DG (2012) Gelation of cellulose nanocrystal suspensions in glycerol. Cellulose 19:687–694

    CAS  Google Scholar 

  • Emam HE (2018) Generic strategies for functionalization of cellulosic textiles with metal salts. Cellulose 26:1431–1447

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properies of polymers, vol 15. Wiley, New York

    Google Scholar 

  • Gericke M, Fardim P, Heinze T (2012) Ionic liquids–promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502

    PubMed  PubMed Central  Google Scholar 

  • Gubitosi M, Duarte H, Gentile L, Olsson U, Medronho B (2016) On cellulose dissolution and aggregation in aqueous tetrabutylammonium hydroxide. Biomacromol 17:2873–2881

    CAS  Google Scholar 

  • Gupta KM, Hu Z, Jiang J (2013) Cellulose regeneration from a cellulose/ionic liquid mixture: the role of anti-solvents. RSC Adv 3:12794–12801

    CAS  Google Scholar 

  • Hauru LKJ, Hummel M, King AWT, Kilpeläinen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecule 13:2896–2905

    CAS  Google Scholar 

  • Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecule 13:1688–1699

    CAS  Google Scholar 

  • Hong W, Xu G, Ou X, Sun W, Wang T, Tong Z (2018) Colloidal probe dynamics in gelatin solution during the sol-gel transition. Soft Matter 14:3694–3703

    PubMed  CAS  Google Scholar 

  • Huang Y-B, Xin P-P, Li J-X, Shao Y-Y, Huang C-B, Pan H (2016) Room-temperature dissolution and mechanistic investigation of cellulose in a tetra-butylammonium acetate/dimethyl sulfoxide system. ACS Sust Chem Eng 4:2286–2294

    CAS  Google Scholar 

  • Idström A et al (2017) On the dissolution of cellulose in tetrabutylammonium acetate/dimethyl sulfoxide: a frustrated solvent. Cellulose 24:3645–3657

    Google Scholar 

  • Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15:11922–11940

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang Z, Chen D, Yu Y, Miao J, Liu Y, Zhang L (2017) Composite fibers prepared from multi-walled carbon nanotubes/cellulose dispersed/dissolved in ammonium/dimethyl sulfoxide mixed solvent. RSC Adv 7:2186–2192

    CAS  Google Scholar 

  • Jiang Z, Miao J, Yu Y, Zhang L (2016) Effective preparation of bamboo cellulose fibers in quaternary ammonium/DMSO solvent. BioResources 11:4536–4549

    CAS  Google Scholar 

  • Jiang Z, Tang L, Gao X, Zhang W, Ma J, Zhang L (2019) Solvent regulation approach for preparing cellulose-nanocrystal-reinforced regenerated cellulose fibers and their properties. ACS Omega 4:2001–2008

    PubMed  PubMed Central  CAS  Google Scholar 

  • Keleşoğlu S, Pettersen BH, Sjöblom J (2012) Flow properties of water-in-North Sea heavy crude oil emulsions. J Petrol Sci Eng 100:14–23

    Google Scholar 

  • Kouda T, Yano H, Yoshinaga F, Kaminoyama M, Kamiwano M (1996) Characterization of non-newtonian behavior during mixing of bacterial cellulose in a bioreactor. J Fermentation Bioeng 82:382–386

    Google Scholar 

  • Le KA, Sescousse R, Budtova T (2011) Influence of water on cellulose-EMIMAc solution properties: a viscometric study. Cellulose 19:45–54

    Google Scholar 

  • Lee YJ, Kwon MK, Lee SJ, Jeong SW, Kim H-C, Oh TH, Lee SG (2017) Influence of water on phase transition and rheological behavior of cellulose/ionic liquid/water ternary systems. J Appl Polym Sci 134:44658

    Google Scholar 

  • Li K, Peng J, Turng L-S, Huang H-X (2011) Dynamic rheological behavior and morphology of polylactide/poly(butylenes adipate-co-terephthalate) blends with various composition ratios. Adv Polymer Technol 30:150–157

    CAS  Google Scholar 

  • Liu S, Li H, Tang B, Bi S, Li L (2016) Scaling law and microstructure of alginate hydrogel. Carbohydr Polym 135:101–109

    PubMed  CAS  Google Scholar 

  • Liu X, Chang PR, Zheng P, Anderson DP, Ma X (2015) Porous cellulose facilitated by ionic liquid [BMIM]Cl: fabrication, characterization, and modification. Cellulose 22:709–715

    CAS  Google Scholar 

  • Lu F, Song J, Cheng B-W, Ji X-J, Wang L-J (2013) Viscoelasticity and rheology in the regimes from dilute to concentrated in cellulose 1-ethyl-3-methylimidazolium acetate solutions. Cellulose 20:1343–1352

    CAS  Google Scholar 

  • Ma J, Lin Y, Chen X, Zhao B, Zhang J (2014) Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions. Food Hydrocolloids 38:119–128

    CAS  Google Scholar 

  • Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opinion Colloid Interface Sci 19:32–40

    CAS  Google Scholar 

  • Miao J, Sun H, Yu Y, Song X, Zhang L (2014) Quaternary ammonium acetate: an efficient ionic liquid for the dissolution and regeneration of cellulose. RSC Adv 4:36721–36724

    CAS  Google Scholar 

  • Miao J, Yu Y, Jiang Z, Zhang L (2016) One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose 23:1209–1219

    CAS  Google Scholar 

  • Mo G, Zhang R, Wang Y, He L (2017) The interplay between gelation and phase separation in PAN/DMSO/H2O blends and the resulted critical gels. Eur Polymer J 92:40–50

    CAS  Google Scholar 

  • Mohsenian S, Ramiar A, Ranjbar AA (2016) Numerical study of laminar non-Newtonian nanofluid flow in a T-Junction: investigation of viscous dissipation and temperature dependent properties. Appl Thermal Eng 108:221–232

    CAS  Google Scholar 

  • Nazari B, Kumar V, Bousfield DW, Toivakka M (2016) Rheology of cellulose nanofibers suspensions: boundary driven flow. J Rheol 60:1151–1159

    CAS  Google Scholar 

  • Östlund Å, Lundberg D, Nordstierna L, Holmberg K, Nydén M (2009) Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromol 10:2401–2407

    Google Scholar 

  • Parviainen A et al (2015) Sustainability of cellulose dissolution and regeneration in 1,5-diazabicyclo[4.3.0]non-5-enium acetate: a batch simulation of the IONCELL-F process. RSC Adv 5:69728–69737

    CAS  Google Scholar 

  • Peng H, Dai G, Wang S, Xu H (2017) The evolution behavior and dissolution mechanism of cellulose in aqueous solvent. J f Molecular Liquids 241:959–966

    CAS  Google Scholar 

  • Pereira A et al (2018) Cellulose gelation in NaOH solutions is due to cellulose crystallization. Cellulose 25:3205–3210

    CAS  Google Scholar 

  • Qin Z et al (2017) Injectable shear-thinning hydrogels with enhanced strength and temperature stability based on polyhedral oligomeric silsesquioxane end-group aggregation. Polymer Chem 8:1607–1610

    CAS  Google Scholar 

  • Rajeev A, Basavaraj MG (2019) Colloidal particle-induced microstructural transition in cellulose/ionic liquid/water mixtures. Langmuir 35:12428–12438

    PubMed  CAS  Google Scholar 

  • Rajeev A, Deshpande AP, Basavaraj MG (2018) Rheology and microstructure of concentrated microcrystalline cellulose (MCC)/1-allyl-3-methylimidazolium chloride (AmimCl)/water mixtures. Soft Matter 14:7615–7624

    PubMed  CAS  Google Scholar 

  • Sayyed AJ, Deshmukh NA, Pinjari DV (2019) A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26:2913–2940

    CAS  Google Scholar 

  • Shin S, Dorfman KD, Cheng X (2017) Shear-banding and superdiffusivity in entangled polymer solutions. Phys Rev E 96(6):062503

    PubMed  Google Scholar 

  • Sollich P (1998) Rheological constitutive equation for a model of soft glassy materials. Phys Rev E 58:738–759

    CAS  Google Scholar 

  • Song Y, Chen W, Niu X, Fang G, Min H, Pan H (2018) An energy efficient one-pot swelling/esterification method to prepare cellulose nanofiber with uniform diameter. Chem Sus Chem 11:3714–3718

    CAS  Google Scholar 

  • Sow LC, Tan SJ, Yang H (2019) Rheological properties and structure modification in liquid and gel of tilapia skin gelatin by the addition of low acyl gellan. Food Hydrocolloids 90:9–18

    CAS  Google Scholar 

  • Tabilo-Munizaga G, Barbosa-Cánovas GV (2005) Rheology for the food industry. J Food Eng 67:147–156

    Google Scholar 

  • Tan L, Pan D, Pan N (2011) Water effect on the rheologic behavior of PAN solution during thermal-induced gelation process. Polymers Adv Technol 22:2279–2284

    CAS  Google Scholar 

  • Wada M, Heux L, Nishiyama Y, Langan P (2009) The structure of the complex of cellulose I with ethylenediamine by X-ray crystallography and cross-polarization/magic angle spinning 13C nuclear magnetic resonance. Cellulose 16:943–957

    CAS  Google Scholar 

  • Wang Y, Liu W, Mo G, Zhang R (2015) Rheological manifestation of the second self-similar structure in gelation process of PAN/DMSO/H2O system. Polymer 73:149–155

    Google Scholar 

  • Winter HH (1987) Can the gel point of a cross-linking polymer be detected by the G′–G″ crossover? Polymer Eng Sci 27:1698–1702

    CAS  Google Scholar 

  • Yang S, Zou Q, Wang T, Zhang L (2019) Effects of GO and MOF@GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane. J Membrane Sci 569:48–59

    CAS  Google Scholar 

  • Yang Z, Yang H, Yang H (2018) Effects of sucrose addition on the rheology and microstructure of κ-carrageenan gel. Food Hydrocolloids 75:164–173

    CAS  Google Scholar 

  • Yao Y, Xia X, Mukuze KS, Zhang Y, Wang H (2014) Study on the temperature-induced sol–gel transition of cellulose/silk fibroin blends in 1-butyl-3-methylimidazolium chloride via rheological behavior. Cellulose 21:3737–3743

    CAS  Google Scholar 

  • Yu X, Qin Z, Wu H, Lv H, Yang X (2019) Tuning hydrogel mechanics by kinetically dependent cross-linking. Macromolecules 52:1249–1256

    Google Scholar 

  • Yuan X, Cheng G (2015) From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids. Phys Chem Chem Phys 17:31592–31607

    PubMed  CAS  Google Scholar 

  • Zhang H et al (2017) Facile cellulose dissolution and characterization in the newly synthesized 1,3-diallyl-2-ethylimidazolium. Acetate Ionic Liquid Polymers 9:526

    Google Scholar 

  • Zhang J et al (2019) TBAH/Urea/H2O solvent for room temperature wet-spinning of cellulose and optimization of drawing process. Cellulose 26:6959–6977

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the Specialized Research Fund for the Forestry Public Welfare Industry (201504602-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8618 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Jiang, Z., Yang, S. et al. Different rheological behaviours of cellulose/tetrabutylammonium acetate/dimethyl sulfoxide/water mixtures. Cellulose 27, 7967–7978 (2020). https://doi.org/10.1007/s10570-020-03363-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03363-8

Keywords

Navigation