Skip to main content
Log in

Microfiltration performance of regenerated cellulose membrane prepared at low temperature for wastewater treatment

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A series of regenerated cellulose membranes with pore diameters ranging from 21 to 52 nm have been prepared by dissolving cellulose in 5 wt% LiOH/12 wt% urea aqueous solution re-cooled to −12 °C. The influences of cellulose concentration on the structure, pore size, and the mechanical properties of the membrane were studied by using Wide angle X-ray diffraction, scanning electron micrography and tensile testing. Their pore size, water permeability, equilibrium-swelling ratio and fouling behaviors of the cellulose membranes were characterized. The water-soluble synthetic and natural polymers as organic matter were used to evaluate the microfiltration performance of the regenerated cellulose membrane for wastewater treatment in aqueous system. The results revealed that the organic matter with molecular weight more than 20 kDa effected significantly on the membrane pore density, and reducing factor a 2, whereas that having molecular weight less than 20 kDa exhibited a little influence on the membrane pore size reducing factor a 1. Furthermore, a simple model to illustrate of microfiltration process of the RC membrane for wastewater treatment was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a 1 :

Membrane pore size change coefficient (m−1)

a 2 :

Pore density change coefficient (m−1)

d :

Thickness of wet membrane (cm)

J 0 :

Permeability of the pure water (m3/m2 s)

J vi :

Flux of polluted water per unit membrane area (m3/m2 s)

N i :

Total number of pores per unit area (-)

P :

Pressure (Pa)

P r :

Porosity of the wet membrane (%)

Q :

Equilibrium-swelling ratio (-)

q i :

The accumulated permeate volume (m3)

R :

Pore diameter (cm)

r :

The radius of the wet membrane (cm)

R i :

The mean pore diameter (cm)

RC:

Regenerated cellulose

S c :

The area of all diffraction peaks of crystalline

S a :

The area of all diffraction peaks of amorphous

UFR :

Ultrafilter rate of membrane for pure water (mL h−1 m−2 mm Hg−1)

W :

Weight of the membrane at dry state (g)

ρc :

Density of bulk cellulose (g cm−3)

ρm :

Density of the wet membrane containing pore (g cm−3)

σb :

Tensile strength (MPa)

εb :

Breaking elongation (%)

η :

The solvent viscosity (N s/m2)

δ:

The length of the pores (μm)

References

  • Belfort G, Davis R, Zydney A (1994) The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J Membr Sci 96:1–58

    Article  CAS  Google Scholar 

  • Bell C, Peppas N (1996) Water, solute and protein diffusion in physiologically responsive hydrogels of poly(methacrylic acid-g-rthylene glycol). Biomaterials 17:1203–1218

    Article  CAS  Google Scholar 

  • Burns D, Zydney A (1999) Effects of solution PH on protein transport through semipermeable ultrafiltration membranes. Biotechnol Bioeng 64:27–37

    Article  CAS  Google Scholar 

  • Burns D, Zydney A (2000) Buffer effects on the zeta potential of ultrafiltration membranes. J Membr Sci 172:39–48

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007a) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 8:1572–1579

    Article  CAS  Google Scholar 

  • Cai J, Wang L, Zhang L (2007b) Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH–urea aqueous solution. Cellulose 14:205–215

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han H, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  • Capar G, Yilmaz L, Yetis U (2006) Reclamation of acid dye bath wastewater: effect of pH on nanofiltration performance. J Membr Sci 281:560–569

    Article  CAS  Google Scholar 

  • Chan R, Chen V (2004) Characterization of protein fouling on membranes: opportunities and challenges. J Membr Sci 242:169–188

    Article  CAS  Google Scholar 

  • Clech P, Chen V, Fane T (2006) Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci 284:17–53

    Article  Google Scholar 

  • Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose Part II: free floating cotton and wood fibres in NaOH-water-additives systems. Macromol Symp 244:19–30

    Article  CAS  Google Scholar 

  • Duclos-Orsello C, Li W, Ho C (2006) A three mechanism model to describe fouling of microfiltration membranes. J Membr Sci 280:856–866

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15:361–370

    Article  CAS  Google Scholar 

  • Fane A, Fell C (1987) A review of fouling and fouling control in ultrafiltration. Desalination 62:117–136

    Article  CAS  Google Scholar 

  • Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose-NaOH-water gels and comparison with cellulose-N-methylmorpholine-N-oxide-water solutions. Biomacromolecules 8:424–432

    Article  CAS  Google Scholar 

  • Hong S, Elimelech M (1997) Chemical and physical aspects of nom fouling of nanofiltration membranes. J Membr Sci 132:159–181

    Article  CAS  Google Scholar 

  • Isogai A, Usuda M, Koto T, Ulyu T, Atalla R (1989) Solid-state CP/MASS 13C NMR study of cellulose polymorphs. Macromolecules 22:3168–3172

    Article  CAS  Google Scholar 

  • Kamide K, Iijima H, Matsuda S (1993) Thermodynamics of formation of porous polymeric membrane by phase separation method I: nucleation and growth of nuclei. Polym J 25:1113–1131

    Article  CAS  Google Scholar 

  • Khayet M, Khulbe K, Matsuura T (2004) Characterization of membranes for membrane distillation by atomic force microscopy and estimation of their water vapor transfer coefficients in vacuum membrane distillation process. J Membr Sci 238:199–211

    Article  CAS  Google Scholar 

  • Kim J, Yun S (2006) Discovery of cellulose as a smart material. Macromolecues 39:4202–4206

    Article  CAS  Google Scholar 

  • Liu S, Zhang L (2009) Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16:189–198

    Article  CAS  Google Scholar 

  • Loeb S, Sourirajan S (1963) Sea water demineralization by means of an osmotic membrane. Adv Chem Ser 38:117–132

    Article  CAS  Google Scholar 

  • Lue A, Zhang L, Ruan D (2007) Inclusion complex formation of cellulose in NaOH–thiourea aqueous system at low temperature. Macromol Chem Phys 208:2359–2366

    Article  CAS  Google Scholar 

  • Mao Y, Zhou J, Cai J, Zhang L (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279:246–255

    Article  CAS  Google Scholar 

  • Marshall A, Munro P, Tragardh G (1993) The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: a literature review. Desalination 91:65–108

    Article  CAS  Google Scholar 

  • Mehta A, Zydney A (2006) Effects of membrane charge on flow and protein transport during ultrafiltration. Biotechnol Prog 22:484–492

    Article  CAS  Google Scholar 

  • Mosqueda-Jimenez D, Narbaitz R, Matsuura T (2004) Membrane fouling test: apparatus evaluation. J Environ Eng ASCE 130:90–98

    Article  CAS  Google Scholar 

  • Parameshwaran K, Fane A, Cho B, Kim K (2001) Analysis of microfiltration performance with constant flux processing of secondary effluent. Water Res 35:4349–4358

    Article  CAS  Google Scholar 

  • Pujar N, Zydney A (1994) Electrostatic and electrokinetic interactions during protein transport through narrow pore membranes. Ind Eng Chem Res 33:2473–2482

    Article  CAS  Google Scholar 

  • Qi H, Cai J, Zhang L, Nishiyama Y, Rattaz A (2008) Influence of finishing oil on structure and properties of multi-filament fibers from cellulose dope in NaOH/urea aqueous solution. Cellulose 15:81–89

    Article  CAS  Google Scholar 

  • Rabek J (1980) Experimental methods in polymer chemistry: applications of wide-angle X-ray diffraction (WAXD) to the study of the structure of polymers. Wiley Interscience, Chichester

    Google Scholar 

  • Ruan D, Zhang L, Mao Y, Zeng M, Li X (2004a) Microporous films prepared from cellulose in NaOH/thiourea aqueous solution. J Membr Sci 241:265–274

    Article  CAS  Google Scholar 

  • Ruan D, Zhang L, Zhang Z, Xia X (2004b) Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films. J Polym Sci Polym Phys 42:367–373

    Article  CAS  Google Scholar 

  • Samir M, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316

    Article  CAS  Google Scholar 

  • Sang Y, Dong I, Younsook S, Hwan C, Hak Y, Yong S, Won H, Ji H (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  Google Scholar 

  • Sescousse R, Budtova T (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose–NaOH–water solutions. Cellulose 16:417–426

    Article  CAS  Google Scholar 

  • Singh S, Khulbe K, Matsuura T, Ramamurthy P (1998) Membrane characterization by solute transport and atomic force microscopy. J Membr Sci 142:111–127

    Article  CAS  Google Scholar 

  • Tao Y, Zhang L, Yan F, Wu X (2007) Chain conformation of water-insoluble hyperbranched polysaccharide from fungus. Biomacromolecules 8:2321–2328

    Article  CAS  Google Scholar 

  • Teixeira M, Rosa M, Nystrom M (2005) The role of membrane charge on nanofiltration performance. J Membr Sci 265:160–166

    Article  CAS  Google Scholar 

  • Wang L, Wang X (2006) Study of membrane morphology by microscopic image analysis and membrane structure parameter model. J Membr Sci 283:109–115

    Article  CAS  Google Scholar 

  • Weng L, Zhang L, Ruan D, Shi L, Xu J (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmiur 20:2086–2093

    Article  CAS  Google Scholar 

  • Yang G, Zhang L (1996) Regenerated cellulose microporous membranes by mixing cellulose cuoxan with a water soluble polymer. J Membr Sci 114:149–155

    Article  CAS  Google Scholar 

  • Yuan W, Zydney A (1999) Effects of solution environment on humic acid fouling during microfiltration. Desalination 122:63–76

    Article  CAS  Google Scholar 

  • Zhao C, Zhou X, Yue Y (2000) Determination of pore size and pore size distribution on the surface of hollow-fiber filtration membrane: a review of methods. Desalination 129:107–123

    Article  CAS  Google Scholar 

  • Zhou J, Zhang L, Cai J, Shu H (2002) Cellulose microporous films prepared from NaOH/urea aqueous solution. J Membr Sci 210:77–90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program, 2010CB732203), and National Natural Science Foundation of China (20374025). Dr. S. Liu thanks the goal-oriented project (SKLF-MB-200805) from State Key Laboratory of Jiangnan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Zeng, J., Tao, D. et al. Microfiltration performance of regenerated cellulose membrane prepared at low temperature for wastewater treatment. Cellulose 17, 1159–1169 (2010). https://doi.org/10.1007/s10570-010-9450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9450-6

Keywords

Navigation