Skip to main content
Log in

Elastic coils: deformation micromechanics of coir and celery fibres

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Natural fibres, such as flax and hemp, are typically chosen as reinforcing elements in composites to replace traditional glass fibres due to their high stiffness, strength and low strain to failure. Some plant fibres such as coir and celery however possess high strains to failure, which could be utilised in a composite to enhance toughness. This paper reports on the use of Raman spectroscopy to follow the molecular deformation of single fibres of coir and celery. The technique is also used to characterise the orientation of the cellulose structure within the fibres. It is shown by mechanical testing of fibres that both celery and coir possess a non-linear stress–strain curve. Coir fibres however exhibit high strain to failure, whereas celery fibres are shown to have a much lower value of this parameter, despite having a similar coiled fibrillar structure. It is shown by using polarised Raman spectroscopy, and rotating the specimens with respect to the polarisation axis of the laser and measuring the intensity of the 1095 cm−1 Raman band, that both celery and coir fibres combine both axial and transverse orientation, due to their coiled structures. This is also confirmed by birefringence measurements. By following the shift in the central position of this Raman band as a function of cyclic deformation of the fibres, it is shown that the coir fibres recover their molecular deformation, whereas the celery does not show the same level of recovery. This difference between the fibres is postulated to be due to the fact that coir possesses an interlaced fibrillar structure, which remains intact, whereas the celery sub-fibrils unravel and orient towards the fibre axis during deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdul-Khalil HPS, Siti-Alwani M, Mohd-Omar AK (2006) Chemical composition, anatomy, lignin distribution and cell wall structure of Malaysian plant waste fibers. Bioresources 1:220–232

    Google Scholar 

  • Bledzki AK, Gassan J (1999) Composite reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta Part A 53:2383–2392

    Article  Google Scholar 

  • Eichhorn SJ, Young RJ (2003) Deformation micromechanics of natural cellulose fibre networks and composites. Compos Sci Technol 63:1225–1230

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Young RJ (2004) Composite micromechanics of hemp fibres and epoxy resin microdroplets. Compos Sci Technol 64:767–772

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Hughes M, Snell R, Mott L (2000) Strain induced shifts in the Raman spectra of natural cellulose fibres. J Mater Sci Lett 19:721–723

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Baililie CA, Zafeiropoulus N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001a) Review: current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Sirichaisit J, Young RJ (2001b) Deformation mechanisms in cellulose fibres, paper and wood. J Mater Sci 36:3129–3135

    Article  CAS  Google Scholar 

  • Gedde UW (1995) Polymer physics. Chapman and Hall, London

    Google Scholar 

  • Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Molecular changes during tensile deformation of single wood fibres followed by Raman microscopy. Biomacromol 7:2077–2081

    Article  CAS  Google Scholar 

  • Goodman AG (2005) Mechanical adaptations of cleavers (Gallium aparine). Ann Bot 95:475–480

    Article  Google Scholar 

  • Hamad WY, Eichhorn SJ (1997) Deformation micromechanics of regenerated cellulose fibres using Raman spectroscopy. ASME J Eng Mat Tech 119:309–313

    Article  CAS  Google Scholar 

  • Hughes M, Sebe G, Hague J, Hill C, Spear M, Mott L (2000) An investigation into the effects of micro-compressive defects on interphase behaviour in hemp-epoxy composites using half-fringe photoelasticity. Compos Interf 7:13–29

    Article  CAS  Google Scholar 

  • Hughes M, Hill CAS, Hague JRB (2002) The fracture toughness of bast fibre reinforced polyester composites—part 1—evaluation and analysis. J Mat Sci 37:4669–4676

    Article  CAS  Google Scholar 

  • Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A 35:371–376

    Article  Google Scholar 

  • Kennedy CJ, Cameron GJ, Å turcová A, Apperley DC, Altaner C, Wess TJ, Jarvis MC (2007) Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence. Cellulose 14:235–246

    Article  CAS  Google Scholar 

  • Kölln K, Grotkopp I, Burghammer M, Roth SV, Funari SS, Dommachc M, Müllera M (2005) Mechanical properties of cellulose fibres and wood. Orientational aspects in situ investigated with synchrotron radiation. J Synch Rad 12:739–744

    Article  Google Scholar 

  • Kulkarni AG, Satyanarayana KG, Sukumaran K, Rohatgi PK (1981) Mechanical behavior of coir fibers under tensile load. J Mater Sci 16:905–914

    Article  Google Scholar 

  • Li Y, Hu YP, Hu CJ, Yu YH (2008) Microstructures and mechanical properties of natural fibres. Adv Mater Res 33–37:553–558

    Article  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Indust Appl Math 11:431–441

    Article  Google Scholar 

  • Martinschitz KJ, Boesecke P, Garvey CJ, Gindl W, Keckes J (2008) Changes in microfibril angle cyclically deformed dry coir fibres studied by in situ synchroton X-ray diffraction. J Mater Sci 43:350–356

    Article  CAS  Google Scholar 

  • McCrum NG, Buckley CP, Bucknall CB (2001) Principles of polymer engineering. Oxford University Press, Oxford

    Google Scholar 

  • Mitra VK, Risen WM Jr, Baughman RH (1977) A laser Raman study of the stress dependence of vibrational frequencies of a monocrystalline polydiacetylene. J Chem Phys 66:2731–2736

    Article  CAS  Google Scholar 

  • Morton WE, Hearle JWS (1975) Physical properties of textile fibres. The Textile Institute, Manchester

    Google Scholar 

  • Mukhopadhyay S, Fangueiro R, Shivankar V (2009) Variability of tensile properties of fibers from pseudostem of banana plant. Text Res J 79:387–393

    Article  CAS  Google Scholar 

  • Munawar SS, Umemura K, Kawai S (2007) Characterization of the morphological, physical and mechanical properties of seven nonwood plant fiber bundles. J Wood Sci 53:108–113

    Article  Google Scholar 

  • O’Looney N, Fry SC (2005) A simple apparatus for measuring long-term extension of plant cell walls subjected to tensile stress. Plant Biosyst 139:102–106

    Google Scholar 

  • Peetla P, Schenzel KC, Diepenbrock W (2006) Determination of mechanical strength properties of hemp fibers using near-infrared Fourier transform Raman microspectroscopy. Appl Spectrosc 60:682–691

    Article  CAS  Google Scholar 

  • Pleasants S, Batchelor WJ, Parker IH (1998) Measuring the fibril angle of bleached fibres using micro-Raman spectroscopy. Appita J 51:373–376

    CAS  Google Scholar 

  • Preston JM (1933) Relations between the refractive indices and the behaviour of cellulose fibres. Trans Farad Soc 29:65–71

    Article  CAS  Google Scholar 

  • Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose. doi:10.1007/s10570-009-9331-z (in press)

  • Silva GG, De Souza DA, Machado JC, Hourston DJ (2000) Mechanical and thermal characterization of native brazilian coir fiber. J Appl Poly Sci 76:1197–1206

    Article  CAS  Google Scholar 

  • Stern F (1957) A note on the structure and mechanical properties of coir fibre. J Text Inst 48:21–25

    Article  Google Scholar 

  • Thimm JC, Burritt DJ, Sims IM, Newman RH, Ducker WA, Melton LD (2002) Celery (Apium graveolens) parenchyma cell walls: cell walls with minimal xyloglucan. Physiol Plant 116:164–171

    Article  CAS  Google Scholar 

  • Tze WTY, Gardner DJ, Tripp CP, O’Neill SC (2006) Cellulose fiber/polymer adhesion: effects of fiber/matrix interfacial chemistry on the micromechanics of the interphase. J Adhes Sci Technol 20:1649–1668

    Article  CAS  Google Scholar 

  • Tze WTY, O’Neill SC, Tripp CP, Gardner DJ, Shaler SM (2007) Evaluation of load transfer in the cellulosic-fiber/polymer interphase using a micro-Raman tensile test. Wood Fiber Sci 39:184–195

    CAS  Google Scholar 

  • Wiley H, Atalla RH (1987) Band assignments in the Raman spectra of cellulose. Carbohydr Res 160:113–429

    Article  CAS  Google Scholar 

  • Young RJ, Eichhorn SJ (2007) Deformation mechanisms in polymer fibres and nanocomposites. Polymer 48:2–18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Indonesian Government and the University of Manchester for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Eichhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakri, B., Eichhorn, S.J. Elastic coils: deformation micromechanics of coir and celery fibres. Cellulose 17, 1–11 (2010). https://doi.org/10.1007/s10570-009-9373-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9373-2

Keywords

Navigation