Skip to main content

Micromechanics of Cellulose Fibres and Their Composites

  • Conference paper
  • First Online:
Wood is Good

Abstract

Cellulose fibres such as flax, hemp, viscose and lyocell were studied with respect to their use as reinforcing agents in composites. Initially, these fibres are subjected to single fibre tensile tests, and their adhesion with polypropylene and epoxy matrices was determined by application of a microbond technique. Unidirectional epoxy composites with fibre rovings and short fibre–epoxy composites with needle punched nonwovens were manufactured by means of compression moulding. Composites were subjected to mechanical vibrations, bending and tensile tests. Interfacial adhesion was also studied at the macro-level by means of double-notch shear test and scanning electron microscopy. Lyocell fibres performed equally well in comparison with natural cellulose fibres when the dimensional variability was taken into consideration, but less well than Glass fibres at both micro- and macro-levels. The low yield strength and high failure strain observed in the stress–strain diagram of lyocell and lyocell–epoxy composites can be the critical parameter in finding new applications for these biodegradable composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adusumalli RB, Müller U, Roeder T, Weber H, Sixta H, Gindl W (2006a) Tensile testing of single regenerated cellulose fibres. Macromol Symp 244:83–88

    Article  CAS  Google Scholar 

  • Adusumalli RB, Reifferscheid M, Roeder T, Weber H, Sixta H, Gindl W (2006b) Mechanical properties of regenerated cellulose fibres for composites. Macromol Symp 244:119–125

    Article  CAS  Google Scholar 

  • Adusumalli RB, Roeder T, Weber H, Sixta H, Gindl W (2010a) Shear strength of the lyocell fibre/polymer matrix interface evaluated with the microbond technique. J Compos Mater 46(3):359–367

    Article  Google Scholar 

  • Adusumalli RB, Roeder T, Weber H, Sixta H, Gindl W (2010b) Evaluation of experimental parameters in the microbond test with regard to lyocell fibres. J Reinf Plast Compos 29(15):2356–2367

    Article  CAS  Google Scholar 

  • Arib RMN, Sapuan SM, Ahmad MMHM, Paridah MT, Khairul Zaman HMD (2006) Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater Des 26(5):391–396

    Article  Google Scholar 

  • Baillie C (2004) Green composites-polymer composites and the environment. Wood head publishing Ltd and CRC Press LLC

    Google Scholar 

  • BISFA (2004) Testing methods viscose, modal, lyocell and acetate staple fibres and tows. Avenue E. Van nieuwenhuyse 4, 1160 Brussels

    Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Buksnowitz C, Teischinger A, Müller U, Pahler A, Evans R (2007) Resonance wood [Picea abies (L.) Karst.]—evaluation and prediction of violin makers’ quality-grading. J Acoust Soc Am 121(4):2384–2395

    Article  PubMed  Google Scholar 

  • Charlet K, Baley C, Morvan C, Jernot JP, Gomina M, Bréard J (2007) Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Compos A Appl Sci Manuf 38(8):1912–1921

    Article  Google Scholar 

  • Chawla KK (1998a) Composite materials. Springer Verlag. ISBN:0 387 98409 7

    Google Scholar 

  • Chawla KK (1998b) Fibrous materials. Cambridge University Press. ISBN:0 521 57079 4

    Google Scholar 

  • Daniel IM, Ishai O (1994) Engineering mechanics of composite materials. Oxford University Press. ISBN:0 19 507506 4

    Google Scholar 

  • Drzal LT, Herrera-Franco PJ, Ho H (2000) Fibre-matrix interface tests. In: Kelly A, Zweben C (eds.) Comprehensive composite materials. Elsevier science Ltd, Chap X, p. 71–111

    Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524

    Article  CAS  Google Scholar 

  • Franko A, Seavy KC, Gumaer J, Glasser WG (2001) Continious cellulose fiber-reinforced cellulose ester composites III—commercial matrix and fiber options. Cellulose 8:171–179

    Article  CAS  Google Scholar 

  • Ganster J, Fink HP, Pinnow M (2006) High-tenacity man-made cellulose fibre reinforced thermoplastics—Injection moulding compounds with polyprophylene and alternative matrices. Compos A 37:1796–1804

    Article  Google Scholar 

  • Gindl W, Keckes J (2006) Strain hardening in regenerated cellulose fibres. Compos Sci Technol 66:2049–2053

    Article  CAS  Google Scholar 

  • Hanselka H, Herrmann AX (1999) Technischer Leitfaden zur Anwendung von Ökologisch vorteilhaften Faserverbundwerkstoffen aus nachwachsender Rohstoffen—am Beispiel eines Kastenträgers als Prototyp für hochbelastbare Baugruppen. Shaker verlag. ISBN: 3826560183

    Google Scholar 

  • Herakovich CT (1998) Mechanics of fibrous composites. John Wiley & Sons, Inc. ISBN:0 471 10636 4

    Google Scholar 

  • Kelly A, Zweben C, Talreja R (2000) Comprehensive composite materials. Polym Matrix Compos, vol 2. Elsevier science. ISBN: 0–08-043720-6

    Google Scholar 

  • Kessler RW, Becker U, Kohler R, Goth B (1998) Steam explosion of flax - a superior technique for upgrading fibre value. Biomass Bioenergy 14(3):237–249

    Article  CAS  Google Scholar 

  • Lampke T (2001) Beitrag zur Charakterisierung naturfaserverstärkter Verbundwerkstoffe mit hochpolymerer Matrix. Dissertation. TU Chemnitz, Germany

    Google Scholar 

  • Lützkendorf R, Mieck KP, Reußmann T, Nechwatal A, Eilers M (2000) Lyocellfasern—ihr Entwicklungsstand unter dem Aspekt des Einsatzes in Composites. 3rd international wood and natural fibre composite symposium. Kassel, Germany

    Google Scholar 

  • Marsh G (2003) Next step for automotive materials. Mater Today 6(4):36–43

    Article  Google Scholar 

  • Miller B, Muri P, Rebenfeld L (1987) A microbond method for determining of the shear strength of a fibre/resin interface. Compos Sci Technol 28:17–32

    Article  CAS  Google Scholar 

  • Mohanthy AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites. Macromol Mater Eng 276–277(1):1–24

    Article  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT et al. (2005) Natural fibres, biopolymers and biocomposites. CRC-Taylor & Francis group. Chaps. 1, 2, 6, 7, 9

    Google Scholar 

  • Netravali AN, Chabba S (2003) Composites get greener. Mater Today 6(4):22–29

    Article  Google Scholar 

  • Nickel J, Riedel U (2003) Activities in biocomposites. Mater Today 6(4):44–48

    Article  Google Scholar 

  • Pitkethly MJ, Favre JP, Gaur U, Jakubowski J, Mudrich SF, Caldwell DL, Drzal LT, Nardin M, Wagner HD, Di Landro L, Hampe A, Armistead JP, Desaeger M, Verpoest I (1993) A round-robin programme on interfacial test methods. Compos Sci Technol 48:205–214

    Article  CAS  Google Scholar 

  • Schuh TG (1999) Renewable materials for automotive applications. Daimler-Chrysler AG, Copenhagen Natural fibre performance forum

    Google Scholar 

  • Seavey KC, Ghosh I, Davis RM, Glasser WG (2001) Continuous cellulose fibre-reinforced cellulose ester composites. Part-1: manufacturing options. Cellulose 8:149–159

    Article  CAS  Google Scholar 

  • Specht K, Bledzki AK, Fink HP, Kleinholz R (2002) Structural optimized natural fibre/PP composites for automotive interiors. 4th internatational wood and natural fibre composites symposium. Kassel, Germany

    Google Scholar 

  • Ünal Ö, Bansal NP (2000) In-plane and Interlaminar shear strength of a unidirectional Hi-Nicalon fibre-reinforced celsian matrix composites. Glenn Research Center. NASA report (TM-2000-210608)

    Google Scholar 

  • Wallenberger FT, Weston NE (2004) Natura fibres, plastics and composites. Kluwer Academic Publishers. Chaps. 1, 8, 9, 14, 15, 16, 18

    Google Scholar 

  • Wielage B, Leonhardt G (2003). Verbundwerkstoffe and Werkstoffe Verbunde. Wiley—VCH. ISBN: 3527303197

    Google Scholar 

  • Woodings C (2001) Regenerated cellulose fibres. Woodhead Publishing Limited

    Google Scholar 

  • Zhandarov S, Mäder E (2005) Characterization of fibre/matrix interface strength. Applicability of different tests, approaches and parameters. Compos Sci Technol 65:149–160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research would not have been possible without the financial support provided by the Austrian government, the provinces of Lower Austria, Upper Austria and Carinthia, as well as by the Lenzing AG. I would also like to express my sincere appreciation and gratitude to Prof. Herbert Sixta and Dr. Hedda Weber, Dr. Thomas Roeder for their consistent support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Babu Adusumalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Adusumalli, R.B., Venkateshan, K.C., Gindl-Altmutter, W. (2017). Micromechanics of Cellulose Fibres and Their Composites. In: Pandey, K., Ramakantha, V., Chauhan, S., Arun Kumar, A. (eds) Wood is Good. Springer, Singapore. https://doi.org/10.1007/978-981-10-3115-1_28

Download citation

Publish with us

Policies and ethics