Skip to main content
Log in

Flocculation of cellulose fibre suspensions: the contribution of percolation and effective-medium theories

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The concept of crowding factor applied to the flocculation of cellulose fibres is revisited through the application of percolation and effective medium theories. It is shown that, even if the crowding factor allows predicting the critical concentration of fibre suspension above which flocculation occurs, and indeed leads to acceptable results in most cases, percolation and effective medium theories are most rigorous and much less empirical. Examples of calculation are given for fibres assumed to behave either like rigid rods or like elongated prolate ellipsoids, and compare very correctly with experimental measurements found in the literature. Finally, beyond the purely geometrical aspects, the roles of several physico-chemical parameters on the onset of flocculation are also discussed, and shown to be perfectly explained by percolation predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alon U, Balberg I, Drory A (1991) New, heuristic, percolation criterion for continuum systems. Phys Rev Lett 66:2879–2882

    Article  Google Scholar 

  • Balberg I (1985) Universal percolation-threshold limits in the continuum. Phys Rev B 31:4053–4055

    Article  Google Scholar 

  • Balberg I, Binenbaum N (1983) Percolation thresholds in the three dimensional sticks system. Phys Rev B 28:3799–3812

    Article  Google Scholar 

  • Balberg I, Binenbaum N (1987) Scher and Zallen criterion: applicability to composite systems. Phys Rev B 35:8749–8752

    Article  Google Scholar 

  • Balberg I, Bozowski S (1982) Percolation in a composite of random stick-like conducting particles. Solid State Commun 44:551–554

    Article  CAS  Google Scholar 

  • Balberg I, Anderson CH, Alexander S, Wagner N (1984) Excluded volume and its relation to the onset of percolation. Phys Rev B 30:3933–3943

    Article  Google Scholar 

  • Beghello L (1998) Some factors that influence fiber flocculation. Nordic Pulp Paper Res J 13:274–279

    Article  CAS  Google Scholar 

  • Beghello L, Eklund D (1997) Some mechanisms that govern fiber flocculation. Nordic Pulp Paper Res J 12:119–123

    Article  CAS  Google Scholar 

  • Bug ALR, Safran SA, Grest GS, Webman I (1985) Do interactions raise or lower a percolation threshold? Phys Rev Lett 55:1896–1899

    Article  CAS  Google Scholar 

  • Celzard A (1995) PhD thesis, University Henri-Poincaré, Nancy 1 (France)

  • Celzard A, Deleuze C, Dufort M, Furdin G, Marêché JF, McRae E (1996) On the critical concentration in percolating systems containing a high aspect ratio filler. Phys Rev B 53:6209–6214

    Article  CAS  Google Scholar 

  • Celzard A, Marêché JF, Payot F (2000) Simple method for characterizing synthetic graphite powders. J Phys D Appl Phys 33:1556–1563

    Article  CAS  Google Scholar 

  • Celzard A, Krzesiñska M, Marêché JF, Puricelli S (2001) Scalar and vectorial percolation in compressed expanded graphite. Physica A 294:283–294

    Article  CAS  Google Scholar 

  • Celzard A, Marêché JF, Payot F, Furdin G (2002) Electrical conductivity of carbonaceous powders. Carbon 40:2801–2815

    Article  CAS  Google Scholar 

  • Celzard A, Schneider S, Marêché JF (2002) Densification of expanded graphite. Carbon 40:2185–2191

    Article  CAS  Google Scholar 

  • Celzard A, Marêché JF, Furdin G (2005) Modelling of exfoliated graphite. Prog Mater Sci 50:93–179

    Article  CAS  Google Scholar 

  • Celzard A, Treusch O, Marêché JF, Wegener G (2005) Electrical and elastic properties of new monolithic wood-based carbon materials. J Mater Sci 40:63–70

    Article  CAS  Google Scholar 

  • Celzard A, Fierro V, Pizzi A (2008) Physical gelation of water-borne thermosetting resins by percolation theory—urea-formaldehyde, melamine-urea-formaldehyde, and melamine-formaldehyde resins. J Polym Sci B Phys 46:971–978

    Article  CAS  Google Scholar 

  • Condon M (1996) Mechanical aspects of forming and formation. In: Proc TAPPI 1996 Papermakers Conference, TAPPI Press, Atlanta, pp 253–273

  • de Gennes PG (1980) Percolation : quelques systèmes nouveaux. J Phys Colloq 41:C3-17–C3-26

    Article  Google Scholar 

  • Dodson CTJ (1996) Fiber crowding, fiber contacts, and fiber flocculation. Tappi J 79:211–216

    CAS  Google Scholar 

  • Egelhof D (1972) Flocculation in streaming fiber suspensions. Wochenbl Papierfabr 100:494–499

    CAS  Google Scholar 

  • Farnood RR, Loewen RR, Dodson CTJ (1993) Forming and formation of paper. In: Baker CF (ed) Proc. 10th Fund. Res. Symp., Oxford, vol 1, pp 183–208

  • Hubbe MA (2007) Flocculation and redispersion of cellulosic fiber suspensions: a review of effects of hydrodynamic shear and polyelectrolytes. BioResources 2:296–331

    CAS  Google Scholar 

  • Kerekes RJ (1995) Perspectives on fiber flocculation in papermaking. In: 1995 Intl. Paper Phys. Conf., TAPPI Press, Atlanta, pp 23–31

  • Kerekes RJ, Schell CJ (1992) Characterization of fiber flocculation regimes by a crowding factor. J Pulp Paper Sci 18:J32–J38

    Google Scholar 

  • Kerekes RJ, Schell CJ (1995) Effects of fiber length and coarseness on pulp flocculation. Tappi 78:133–139

    CAS  Google Scholar 

  • Kropholler HW, Sampson WW (2001) The effect of fiber length distribution on suspension crowding. J Pulp Paper Sci 27:301–305

    CAS  Google Scholar 

  • Lägues M (1979) Electrical conductivity of microemulsions: a case of stirred percolation. J Phys Lett 40:331–333

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1980) Electrodynamics of continuous media. Pergamon, New York

    Google Scholar 

  • Lee CW, Brodkey RS (1987) A visual study of pulp floc dispersion mechanisms. AIChE J 33:297–302

    Article  CAS  Google Scholar 

  • Li L, Chung DDL (1991) Effect of viscosity on the electrical properties of conducting thermoplastic composites. In: 5th Int. SAMPE Electronics Conf., vol 5, Los Angeles (CA), June 1991

  • Mason SG (1954) Fiber motions and flocculation. Tappi 37:494–501

    CAS  Google Scholar 

  • McLachlan DS, Blaszkiewicz M, Newnham RE (1990) Electrical resistivity of composites. J Am Ceram Soc 73:2187–2203

    Article  CAS  Google Scholar 

  • Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K (1982) Electrical conductivity of carbon-polymer composites as a function of carbon content. J Mater Sci 17:1610–1616

    Article  CAS  Google Scholar 

  • Mouney C (1987) PhD thesis, University of Bordeaux 1 (France)

  • Ogale AA, Wang SF (1993) Simulation of the percolation behavior of quasi and transversely isotropic short-fiber composites with a continuum model. Compos Sci Technol 46:379–388

    Article  Google Scholar 

  • Orts WJ, Godbout L, Marchessault RH, Revol JF (1995) Shear-induced alignment of liquid-crystalline suspensions of cellulose microfibrils. ACS Symp Ser 597:335–348

    Article  CAS  Google Scholar 

  • Ozhovan MI, Semenov KN (1992) Percolation in a system of polydispersed particles. Sov Phys JETP 75:696–698

    Google Scholar 

  • Pandya JD, Spielman LA (1982) Floc breakage in agitated suspensions: theory and data processing strategy. J Colloid Interface Sci 92:517–531

    Article  Google Scholar 

  • Peterson DE (1994) Nuclear density consistency meter evaluation. In: Proc. TAPPI 1994 Process Control. Symp., TAPPI Press, Atlanta, pp 9–18

  • Phillips JC, Thorpe MF (1985) Constraint theory, vector percolation and glass formation. Solid State Commun 53:699–702

    Article  CAS  Google Scholar 

  • Ross RF, Klingenberg DJ (1998) Simulation of flowing wood fiber suspensions. J Pulp Paper Sci 24:388–392

    CAS  Google Scholar 

  • Safran SA, Webman I, Grest GS (1985) Percolation in interacting colloids. Phys Rev A 32:506–511

    Article  CAS  Google Scholar 

  • Sahimi M (1994) Applications of percolation theory. Taylor & Francis, Philadelphia, PA

    Google Scholar 

  • Sahimi M (1998) Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown. Phys Rep 306:213–395

    Article  CAS  Google Scholar 

  • Saven JG, Skinner JL, Wright JR (1991) Classical and quantum continuum percolation. J Chem Phys 94:6153–6159

    Article  CAS  Google Scholar 

  • Stoere P, Nazhad M, Kerekes RJ (1954) An experimental study of the effect of refining on paper formation. Tappi 37:494–501

    Google Scholar 

  • Stover CA, Koch DL, Cohen C (1992) Observation of fiber orientation in simple shear flow of semi-dilute suspensions. J Fluid Mech 238:277–296

    Article  CAS  Google Scholar 

  • Sumita M, Abe H, Kayaki H, Miyasaka K (1986) Effect of melt viscosity and surface tension of polymers on the percolation threshold of conductive-particle-filled polymeric composites. J Macromol Sci Phys B25:171–184

    Google Scholar 

  • Ulmar M, Norman B (1997) Observations of fiber orientation in a headbox nozzle at low consistency. In: Proc. TAPPI 1997 Engineering and Paper Conf., TAPPI Press, Atlanta, pp 865–873

  • Van de Ven TGM, Mason SG (1981) Comparison of hydrodynamic and colloidal forces in paper machine headboxes. Tappi 64:171–175

    Google Scholar 

  • Wang SF, Ogale AA (1993a) Continuum space simulation and experimental characterization of electrical percolation behavior of particulate composites. Compos Sci Technol 46:93–103

    Article  CAS  Google Scholar 

  • Wang SF, Ogale AA (1993b) Continuum space simulation of electrical percolation behavior of anisotropic short fiber composites in cubic and non-cubic control volumes. Compos Sci Technol 46:389–398

    Article  Google Scholar 

  • Waterhouse JF (1993) Effect of papermaking variables on formation. Tappi J 76:129–134

    CAS  Google Scholar 

  • Wessling B (1988) Electrical conductivity in heterogeneous polymer systems (IV): a new dynamic interfacial percolation model. Synth Met 27:A83–A88

    Article  CAS  Google Scholar 

  • Wessling B, Volk H, Mathew WR, Kulkarni VG (1988) Models for understanding processing properties of intrinsically conductive polymers. Mol Cryst Liq Cryst 160:205–220

    Article  Google Scholar 

  • Wikström T, Rasmuson A (1998) Yield stress of pulp suspensions. The influence of fiber properties and processing conditions. Nordic Pulp Paper Res J 13:243–250

    Article  Google Scholar 

Download references

Acknowledgments

This research was partly made possible by financial support from the European Commission through the ALFA program (project LIGNOCARB-ALFA II 0412 FA FI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Celzard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celzard, A., Fierro, V. & Pizzi, A. Flocculation of cellulose fibre suspensions: the contribution of percolation and effective-medium theories. Cellulose 15, 803–814 (2008). https://doi.org/10.1007/s10570-008-9229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-008-9229-1

Keywords

Navigation