Skip to main content
Log in

Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation- pyrrole polymerization sequence

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Polypyrrole was polymerized on the surface of cellulose fibres using a sequence of fibre impregnation in FeCl3 solutions, thickening and re-dispersion in a pyrrole solution. ζ-Potential and adsorption isotherms of the FeCl3-cellulose systems showed that the adsorption of iron III was associated with the formation of free Fe3+ cations in the impregnation liquor. Moreover, under the test conditions applied, the amount of adsorbed iron III was not sufficient to promote the polymerization of a adequate amount of pyrrole on the fibre surface. Optimization of the polymerization reaction required that the FeCl3 concentration in the impregnation liquor be increased to approximately 1 mol/l with a subsequent decrease of pH to approximately1.8. Based on scanning electron (SEM) micrographs and the low cellulose polymerization degree measured after pyrrole polymerization, we concluded that the decrease in the electric resistance of bulky polypyrrole/cellulose compounds was associated with a not negligible degradation of the cellulose fibres due to acid hydrolysis and the subsequent impossibility to prepare hand sheets with modified fibres due to the insufficient strength of the wet fibre network. The results of this investigation bring into question the use of FeCl3-pyrrole-cellulose systems for the elaboration of conducting paper sheets with good and stable mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baes C.F., Mesmer R.E. (1986) The Hydrolysis of Cations. Krieger Publ, Malabar, pp 226–237

    Google Scholar 

  • Bouzek K., Mangold K.-M., Juttner K. (2001) Platinum distribution and electrocatalytic properties of modified polypyrrole films. Electrochim. Acta 46:661–670

    Article  Google Scholar 

  • Breslin C.B., Fenelon A.M., Conroy K.G. (2005) Surface engineering: corrosion protection using conducting polymers. Mat. Des. 26:233–237

    CAS  Google Scholar 

  • Buschle-Diller G., Inglesby M.K., Wu Y. (2005) Physicochemical properties of chemically and enzymatically modified cellulosic surfaces. Colloids Surf. A 260:63–70

    Article  CAS  Google Scholar 

  • Careem M.A., Vidanapathirana K.P., Skaarup S., West K. (2004) Dependence of force produced by polypyrrole-based artificial muscles on ionic species involved. Solid State Ionics 175:725–728

    Article  CAS  Google Scholar 

  • Carpi F., De Rossi D. (2006) Colours from electroactive polymers : electrochromic, electroluminescent and laser devices based on organic materials. Optics Laser Tech. 38:292–305

    Article  CAS  Google Scholar 

  • Causley J., Stitzel S., Brady S., Diamond D., Wallace G. (2005) Electrochemically-induced fluid movement using polypyrrole. Synth. Met. 151:60–64

    Article  CAS  Google Scholar 

  • Charlot G. (1961) Dosages colorimetriques des éléments minéraux: principes et méthodes. Masson Ed., Paris

    Google Scholar 

  • Dall’Acqua L., Tonin C., Peila R., Ferrero F., Catellani M. (2004) Performances and properties of intrinsic conductive cellulose-polypyrrole textiles. Synth. Met. 146:213–221

    Article  CAS  Google Scholar 

  • Diaz A.F., Bargon J. (1986) Handbook of Conducting Polymers, vol 1. Marcel-Dekker, New York

    Google Scholar 

  • Gerard M., Chaubey A., Malhotra B.D. (2002) Application of conducting polymers to biosensors. Biosens. Bioelectron. 17:345–359

    Article  CAS  Google Scholar 

  • Högfeldt E. (1982) Stability Constants of metal-ion complexes, Part A: Inorganic Ligands IUPAC Chemical Data Series, No. 21. Pergamon Press, Oxford, pp 208–209

    Google Scholar 

  • Huang B., Kang G.J., Ni Y. (2006) Preparation of conductive paper by in-situ polymerization of pyrrole in a pulp fibre system. Pulp Paper Can. 107:38–41

    CAS  Google Scholar 

  • Huang J., Ichinose I. and Kunitake T. 2005. Nanocoating of natural cellulose fibers with conjugated polymer: hierarchical polypyrrole composite materials. Chem. Commun. 1717–1719

  • Johnston J.H., Moraes J., Borrman T. (2005a) Conducting polymers on paper fibres. Synth. Met. 153:65–68

    Article  CAS  Google Scholar 

  • Johnston J.H., Richardson M.J., Moraes J., Kelly F. and Borrmann T. 2005b. New conducting polymer and metallized composites with paper and wood and their potential applications. 59th APPITA Annual Conference and Exhibition Proceedings, Auckland, 16–19 May, pp. 167–171

  • Jolivet J.P. (2000) Metal Oxide Chemistry and Synthesis. John Wiley & Sons Ltd., Chichester, 59–69

    Google Scholar 

  • Lin T., Wang L., Wang X., Kayan A. (2005) Polymerising pyrrole on polyester textiles and controlling the conductivity through coating thickness. Thin Solid Films 479:77–82

    Article  CAS  Google Scholar 

  • Omastova M., Trchova M., Kovarova J., Stejskal J. (2003) Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth. Met. 138:447–455

    Article  CAS  Google Scholar 

  • Otero T.F., Cantero I. (1999) Conducting polymers as positive electrodes in rechargeable lithium-ion batteries. J. Power Sourc. 81–82:838–841

    Article  Google Scholar 

  • Otero T.F., Boyano I., Cortés M.T., Vazquez G. (2004) Nucleation, nonstoichiometry and sensing muscles from conducting polymers. Electrochim. Acta 49:3719–3726

    Article  CAS  Google Scholar 

  • Parkhurst, D.L. and Appelo, C.A.J., 1999. User’s guide to PHREEQC (version 2) – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99–4259, 312 p

  • Schultze J.W., Karabulut H. (2005) Application potential of conducting polymers. Electrochim. Acta 50:1739–1745

    Article  CAS  Google Scholar 

  • Sik Jang K., Lee H., Moon B. (2004) Synthesis and characterization of water soluble polypyrrole doped with functional dopants. Synth. Met. 143:289–294

    Article  Google Scholar 

  • Song M-K., Kim Y-T., Kim B-S., Kim J., Char K., Rhee H-W. (2004) Synthesis and characterization of soluble polypyrrole doped with alkylbenzenesulfonic acids. Synth. Met. 141:315–319

    Article  CAS  Google Scholar 

  • Stana-Kleinschek K., Ribitsch V. (1998) Electrokinetic properties of processed cellulose fibers. Colloids Surf. A 140:127–138

    Article  CAS  Google Scholar 

  • TAPPI T230 05–76 (1976). Viscosity of pulp. Technical Association of the Paper and Pulp Industry

  • Varesano A., Dall’Acqua L., Tonin C. (2005) A study on the electrical conductivity decay of polypyrrole coated wool textiles. Polym. Degrad. Stab. 89:125–132

    Article  CAS  Google Scholar 

  • Wang L., Zhang Y., Gao P., Shi D., Liu H., Gao H. (2006) Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotech. Bioeng. 93:443–456

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Beneventi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beneventi, D., Alila, S., Boufi, S. et al. Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation- pyrrole polymerization sequence. Cellulose 13, 725–734 (2006). https://doi.org/10.1007/s10570-006-9077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-006-9077-9

Keywords

Navigation