Skip to main content
Log in

Investigation of the internal structure of flax fibre cell walls by transmission electron microscopy

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The development of the use of flax fibre as reinforcement of eco-friendly composite materials requires a good knowledge of its hydrothermal and mechanical behaviours. To this end the fibre internal structure must be finely investigated. Transmission electron microscopy was used to analyse the morphology of the fibre cell walls in terms of the arrangement of the layers and their thickness. Thus, an alternative eco-friendly staining method, based on oolong tea extract was successfully implemented. The results reveal an arrangement at the nanoscale slightly different from the classical four layer model encountered in the literature: the inner layer includes three to four sub-layers. The cell walls comprises two outer layers of relative thickness of about 10 %, a middle layer of about 70 % and a group of thinner layers (called sub-layers) that are contiguous to the lumen with relative thickness of about 20 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos A Appl Sci Manuf 33:939–948

    Article  Google Scholar 

  • Baley C, Morvan C, Grohens Y (2005) Influence of the absorbed water on the tensile strength of flax fibers. Macromol Symp 222:195–202

    Article  CAS  Google Scholar 

  • Barbulée A, Jernot J-P, Bréard J, Gomina M (2014) Damage to flax fibre slivers under monotonic uniaxial tensile loading. Compos A Appl Sci Manuf 64:107–114

    Article  Google Scholar 

  • Batra SK (1998). Handbook of fiber chemistry—other long vegetable fibers. In: Lewin M, Pearce EM

  • Beukers A, van Hinte E (2005) Lightness: the inevitable renaissance of minimum energy structures (010 Publishers)

  • Bos HL, Donald AM (1999) In situ ESEM study of the deformation of elementary flax fibres. J Mater Sci 34:3029–3034

    Article  CAS  Google Scholar 

  • Brett CT, Waldron KW (1996) Physiology and biochemistry of plant cell walls. Chapman and Hall, Londres

    Google Scholar 

  • Carpentier A, Abreu S, Trichet M, Satiat-Jeunemaitre B (2012) Microwaves and tea: new tools to process plant tissue for transmission electron microscopy. J Microsc 247:94–105

    Article  CAS  Google Scholar 

  • Chakravarty A, Hearle JWS (1967) Observations of the tensile properties of ultimate cells of some plant fibres. J Text Inst 58:651–656

    Article  Google Scholar 

  • Charlet K, Baley C, Morvan C, Jernot JP, Gomina M, Bréard J (2007) Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Compos A Appl Sci Manuf 38:1912–1921

    Article  Google Scholar 

  • Charlet K, Jernot JP, Gomina M, Bréard J, Morvan C, Baley C (2009) Influence of an Agatha flax fibre location in a stem on its mechanical, chemical and morphological properties. Compos Sci Technol 69:1399–1403

    Article  CAS  Google Scholar 

  • Chernova T, Gorshkova T (2007) Biogenesis of plant fibers. Russ J Dev Biol 38:221–232

    Article  Google Scholar 

  • Davies GC, Bruce DM (1998) Effect of environmental relative humidity and damage on the tensile properties of flax and nettle fibers. Text Res J 68:623–629

    Article  CAS  Google Scholar 

  • Dittenber DB, GangaRao HV (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf 43:1419–1429

    Article  Google Scholar 

  • Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407

    Article  CAS  Google Scholar 

  • Domenges B, Charlet K (2010) Direct insights on flax fiber structure by focused ion beam microscopy. Microsc Microanal 16:175–182

    Article  CAS  Google Scholar 

  • Le Duigou A, Bourmaud A, Baley C (2015) In-situ evaluation of flax fibre degradation during water ageing. Ind Crops Prod 70:204–210

    Article  Google Scholar 

  • Fink HP, Walenta E, Kunze J (1999) The structure of natural cellulosic fibres-Part 2. The supermolecular structure of bast fibres and their changes by mercerization as revealed by X-ray diffraction and C-13-NMR-spectroscopy. Papier 9:534–542

    Google Scholar 

  • Fromm J, Rockel B, Lautner S, Windeisen E, Wanner G (2003) Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J Struct Biol 143:77–84

    Article  CAS  Google Scholar 

  • Ganster J, Fink HP (1999) Physical constants of cellulose. Polymer Handbook Immergut EH, Grulke

    Google Scholar 

  • Gassan J, Chate A, Bledzki AK (2001) Calculation of elastic properties of natural fibers. J Mater Sci 36:3715–3720

    Article  CAS  Google Scholar 

  • Godin B, Agneessens R, Gofflot S, Lamaudière S, Sinnaeve G, Gerin PA, Delcarte J (2011) Revue bibliographique sur les méthodes d’analyse des polysaccharides structuraux des biomasses lignocellulosiques. Biotechnol Agron Soc Environ 15:165–182

    Google Scholar 

  • Gorshkova TA, Wyatt SE, Salnikov VV, Gibeaut DM, Ibragimov MR, Lozovaya VV, Carpita NC (1996) Cell-wall polysaccharides of developing flax plants. Plant Physiol 110:721–729

    CAS  Google Scholar 

  • Gorshkova TA, Salnikov VV, Pogodina NM, Chemikosova SB, Yablokova EV, Ulanov AV, Ageeva MV, Van Dam JEG, Lozovaya VV (2000) Composition and distribution of cell wall phenolic compounds in flax (Linum usitatissimum L.) stem tissues. Ann Bot 85:477

    Article  CAS  Google Scholar 

  • Gorshkova TA, Sal’nikov VV, Chemikosova SB, Ageeva MV, Pavlencheva NV, van Dam JEG (2003) The snap point: a transition point in Linum usitatissimum bast fiber development. Ind Crops Prod 18:213–221

    Article  Google Scholar 

  • Hearle JWS (1963) The fine structure of fibers and crystalline polymers. III. Interpretation of the mechanical properties of fibers. J Appl Polym Sci 7:1207–1223

    Article  CAS  Google Scholar 

  • Juarez C, Duran A, Valdez P, Fajardo G (2007) Performance of “Agave lecheguilla” natural fiber in Portland cement composites exposed to severe environment conditions. Build Environ 42:1151–1157

    Article  Google Scholar 

  • Lehringer C, Daniel G, Schmitt U (2009) TEM/FE-SEM studies on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Wood Sci Technol 43:691–702

    Article  CAS  Google Scholar 

  • Lennholm H, Larsson T, Iversen T (1994) Determination of cellulose I[alpha] and I[beta] in lignocellulosic materials. Carbohydr Res 261:119–131

    Article  CAS  Google Scholar 

  • Mark RE (1967) Cell wall mechanics of tracheids. Yale University Press, New Haven

    Google Scholar 

  • Meredith J, Ebsworth R, Coles SR, Wood BM, Kirwan K (2012) Natural fibre composite energy absorption structures. Compos Sci Technol 72:211–217

    Article  CAS  Google Scholar 

  • Meredith J, Coles SR, Powe R, Collings E, Cozien-Cazuc S, Weager B, Müssig J, Kirwan K (2013) On the static and dynamic properties of flax and Cordenka epoxy composites. Compos Sci Technol 80:31–38

    Article  CAS  Google Scholar 

  • Morvan C, Andème-Onzighi C, Girault R, Himmelsbach DS, Driouich A, Akin DE (2003) Building flax fibres: more than one brick in the walls. Plant Physiol Biochem 41:935–944

    Article  CAS  Google Scholar 

  • Mukherjee PS, Satyanarayana KG (1986a) An empirical evaluation of structure-property relationships in natural fibres and their fracture behaviour. J Mater Sci 21:4162–4168

    Article  CAS  Google Scholar 

  • Mukherjee PS, Satyanarayana KG (1986b) Structure and properties of some vegetable fibers 2 Pineapple fiber (anannus-comosus). J Mater Sci 2:51–56

    Article  Google Scholar 

  • Näslund P, Vuong R, Chanzy H, Jésior JC (1988) Diffraction contrast transmission electron microscopy on flax fiber ultrathin cross sections. Text Res J 58:414–417

    Google Scholar 

  • Nilsson T, Gustafsson PJ (2007) Influence of dislocations and plasticity on the tensile behaviour of flax and hemp fibres. Compos A Appl Sci Manuf 38:1722–1728

    Article  Google Scholar 

  • Van den Oever MJA, Bos HL, Van Kemenade M (2000) Influence of the physical structure of flax fibres on the mechanical properties of flax fibre reinforced polypropylene composites. Appl Compos Mater 7:387–402

    Article  Google Scholar 

  • Oksman K (2001) High quality flax fibre composites manufactured by the resin transfer moulding process. J Reinf Plast Compos 20:621

    Article  CAS  Google Scholar 

  • Olorunnisola AO (2008) Effects of pre-treatment of rattan (Laccosperma secundiflorum) on the hydration of Portland cement and the development of a new compatibility index. Cement Concr Compos 30:37–43

    Article  CAS  Google Scholar 

  • Pacheco-Torgal F, Jalali S (2011) Cementitious building materials reinforced with vegetable fibres: a review. Constr Build Mater 25:575–581

    Article  Google Scholar 

  • Preston RD (1974) The physical biology of plant cell walls. Chapman and Hall, Londres

    Google Scholar 

  • Roe PJ, Ansell MP (1985) Jute-reinforced polyester composites. J Mater Sci 20:4015–4020

    Article  CAS  Google Scholar 

  • Roland J-C, Mosiniak M, Roland D (1995) Dynamique du positionnement de la cellulose dans les parois des fibres textiles du lin (Linum usitatissimum). Acta Bot Gallica 142:463–484

    Article  Google Scholar 

  • Sasaki Y, Sato S, Adachi A, Dan Y, Nishimura M (2001) Use of oolong tea extract staining of soft-tissue specimens in low-vacuum scanning electron microscope with a cooling stage. Med Electron Microsc 34:254–257

    Article  CAS  Google Scholar 

  • Sato S, Adachi A, Satomura K (1996) The ultrastructure of spiralled collagen in liver fibrosis. Med Electron Microsc 29:153–158

    Article  Google Scholar 

  • Sato S, Sasaki Y, Adachi A, Dai W, Liu X-L, Namimatsu S (2003) Use of oolong tea extract (OTE) for elastin staining and enhancement in ultrathin sections. Med Electron Microsc 36:179–182

    Article  CAS  Google Scholar 

  • Sato S, Adachi A, Sasaki Y, Ghazizadeh M (2008) Oolong tea extract as a substitute for uranyl acetate in staining of ultrathin sections. J Microsc 229:17–20

    Article  CAS  Google Scholar 

  • Sawsen C, Fouzia K, Mohamed B, Moussa G (2014) Optimizing the formulation of flax fiber-reinforced cement composites. Constr Build Mater 54:659–664

    Article  Google Scholar 

  • Sawsen C, Fouzia K, Mohamed B, Moussa G (2015) Effect of flax fibers treatments on the rheological and the mechanical behavior of a cement composite. Constr Build Mater 79:229–235

    Article  Google Scholar 

  • Saxena IM, Brown RM (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21

    Article  CAS  Google Scholar 

  • Sridhar MK, Basavarajappa G, Kasturi SG, Balasubramanian N (1982) Evaluation of jute as a reinforcement in composites. Indian J Fibre Text Res 7:87–92

    Google Scholar 

  • Stout HP, Jenkins JA (1955) Comparative strengths of some bast and leaf fibres. Ann Text Belges 4:231–251

    Google Scholar 

  • Thuault A, Eve S, Bazin J, Charlet K, Destaing F, Gomina M, Bréard J (2011) Morphologie, biocomposition et comportement mécanique des fibres de lin. Matér Tech 99(3):275–280

    Article  Google Scholar 

  • Thuault A, Eve S, Blond D, Bréard J, Gomina M (2013a). Effects of the hygrothermal environment on the mechanical properties of flax fibres. J Compos Mater 0021998313490217

  • Thuault A, Eve S, Jouannot-Chesney P, Bréard J, Gomina M (2013b) Interrelation between the variety and the mechanical properties of flax fibres. J Biobased Mater Bioenergy 7(5):609–618

    Article  CAS  Google Scholar 

  • Thuault A, Bazin J, Eve S, Bréard J, Gomina M (2013c). Numerical study of the influence of structural and mechanical parameters on the tensile mechanical behaviour of flax fibres. J Indu Text 44(1):22–39

    Article  Google Scholar 

  • Tröger F, Wegener G, Seemann C (1998) Miscanthus and flax as raw material for reinforced particleboards. Ind Crops Prod 8:113–121

    Article  Google Scholar 

  • Van de Velde K, Kiekens P (2001) Thermoplastic pultrusion of natural fibre reinforced composites. Compos Struct 54:355–360

    Article  Google Scholar 

  • Wang HH, Drummond JG, Reath SM, Hunt K, Watson PA (2001) An improved fibril angle measurement method for wood fibres. Wood Sci Technol 34:493–503

    Article  CAS  Google Scholar 

  • Weimer PJ, Lopez-Guisa JM, French AD (1990) Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro. Appl Environ Microbiol 56:2421–2429

    CAS  Google Scholar 

  • Yamaguchi K, Suzuki K, Tanaka K (2010) Examination of electron stains as a substitute for uranyl acetate for the ultrathin sections of bacterial cells. J Electron Microsc 59:113

    Article  CAS  Google Scholar 

  • Yan L, Chouw N (2013) Crashworthiness characteristics of flax fibre reinforced epoxy tubes for energy absorption application. Mater Des 51:629–640

    Article  CAS  Google Scholar 

  • Yan L, Chouw N, Jayaraman K (2014a) Flax fibre and its composites—a review. Compos B Eng 56:296–317

    Article  CAS  Google Scholar 

  • Yan L, Chouw N, Jayaraman K (2014b) Effect of triggering and polyurethane foam-filler on axial crushing of natural flax/epoxy composite tubes. Mater Des 56:528–541

    Article  CAS  Google Scholar 

  • Yan L, Chouw N, Jayaraman K (2014c) Lateral crushing of empty and polyurethane-foam filled natural flax fabric reinforced epoxy composite tubes. Compos B Eng 63:15–26

    Article  CAS  Google Scholar 

  • Yan L, Chouw N, Jayaraman K (2015) Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering applications. Mater Des 71:17–25

    Article  CAS  Google Scholar 

Download references

Acknowledgments

They are grateful to the French National Research Center (CNRS) and the Region of Lower Normandy for their financial support. Authors also want to thank Dr. B. Duchemin for his helpful advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Thuault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thuault, A., Domengès, B., Hervas, I. et al. Investigation of the internal structure of flax fibre cell walls by transmission electron microscopy. Cellulose 22, 3521–3530 (2015). https://doi.org/10.1007/s10570-015-0744-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0744-6

Keywords

Navigation