Skip to main content
Log in

Natural highways for end-of-life solutions in the LEO region

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We present the main findings of a dynamical mapping performed in the Low Earth Orbit region. The results were obtained by propagating an extended grid of initial conditions, considering two different epochs and area-to-mass ratios, by means of a singly averaged numerical propagator. It turns out that dynamical resonances associated with high-degree geopotential harmonics, lunisolar perturbations and Solar radiation pressure can open natural deorbiting highways. For area-to-mass ratios typical of the orbiting intact objects, these corridors can be exploited only in combination with the action exerted by the atmospheric drag. For satellites equipped with an area augmentation device, we show the boundary of application of the drag, and where the Solar radiation pressure can be exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alessi, E.M., Deleflie, F., Rosengren, A.J., Rossi, A., Valsecchi, G.B., Daquin, J., et al.: A numerical investigation on the eccentricity growth of GNSS disposal orbits. Celest. Mech. Dyn. Astron. 125, 71–90 (2016)

    Article  ADS  MATH  Google Scholar 

  • Alessi, E.M., Schettino, G., Rossi, A., Valsecchi, G.B.: LEO mapping for passive dynamical disposal. In: Proceedings of the 7th European Conferences on Space Debris, Darmstadt, Germany (2017)

  • Alessi, E.M., Schettino, G., Rossi, A., Valsecchi, G.B.: Dynamical mapping of the LEO region for passive disposal design. In: 68th International Astronautical Congress, Paper IAC-17.A6.2.7 (2017)

  • Alessi, E.M., Schettino, G., Rossi, A., Valsecchi, G.B.: Solar radiation pressure resonances in Low Earth Orbits. Mon. Not. R. Astron. Soc. 473, 2407–2414 (2018)

    Article  ADS  Google Scholar 

  • Anselmo, L., Cordelli, A., Farinella, P., Pardini C., Rossi, A.: Study on long term evolution of Earth orbiting debris, ESA/ESOC Contract No. 10034/92/D/IM(SC) (1996)

  • Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, Revised Edition, AIAA Education Series. American Institute of Aeronautics and Astronautics Inc, Reston (1999)

  • Breiter, S.: Lunisolar apsidal resonances at low satellites orbits. Celest. Mech. Dyn. Astron. 74, 253–274 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Breiter, S.: Lunisolar resonances revisited. Celest. Mech. Dyn. Astron. 81, 81–91 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Celletti, A., Galeş, C.: Dynamical investigation of minor resonances for space debris. Celest. Mech. Dyn. Astron. 123, 203222 (2015)

    Article  MathSciNet  Google Scholar 

  • Colombo, C., Letizia, F., Alessi, E.M., Landgraf, M.: End-of-life Earth re-entry for highly elliptical orbits: the INTEGRAL mission. In: Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, New Mexico, AAS 14-156 (2014)

  • Colombo C., Gkolias, I.: Analysis of orbit stability in the geosynchronous region for end-of-life disposal. In: Proceedings of the 7th European Conference on Space Debris, Darmstadt, Germany (2017)

  • Cook, G.E.: Luni-solar perturbations of the orbit of an Earth satellite. Geophys. J. R. Astron. Soc. 6, 271–291 (1962)

    Article  ADS  MATH  Google Scholar 

  • Ely, T.A., Howell, K.C.: Dynamics of artificial satellite orbits with tesseral resonances including the effects of luni-solar perturbations. Int. J. Dyn. Stab. Syst. 12, 243269 (1997)

    MathSciNet  MATH  Google Scholar 

  • ESA: ESA Space Debris Mitigation Compliance Verification Guidelines, ESSB-HB-U-002 (2015)

  • Frey, S., Lemmens, S.: Status of the space environment: current level of adherence to the space debris mitigation policy. In: Proceedings of the 7th European Conference on Space Debris, Darmstadt, Germany (2017)

  • Frey, S.: Private Communication (2017)

  • Gkolias, I., Colombo, C.: End-of-life disposal of geosynchronous satellites. In: 68th International Astronautical Congress, Adelaide, Australia, Paper Number IAC-17-A6.4.3 (2017)

  • Hughes, S.: Satellite orbits perturbed by direct solar radiation pressure: general expansion of the disturbing function. Planet. Space Sci. 25, 809–815 (1977)

    Article  ADS  Google Scholar 

  • Hughes, S.: Earth satellite orbits with resonant lunisolar perturbations. I. Resonances dependent only on inclination. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 372, 243–264 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • Institute of Aerospace Systems: Technical University of Braunschweig, Meteoroid and Space Debris Terrestrial Environment Reference (MASTER-2009), ESA-SD-DVD-02, Release 1.0, December 2010 (updated in November 2012)

  • Kwok, J.H.: The long-term orbit prediction (LOP). JPL Technical Report EM 312/86-151 (1986)

  • Lamy, A., Morand, V., Le Fèvre, C., Fraysse, H.: Resonance effects on lifetime of Low Earth Orbit satellites. In: Proceedings of the 23rd International Symposium on Space Flight Dynamics, Pasadena, California (2012)

  • Lewis, H.G., Radtke, J., Rossi, A., Beck, J., Oswald, M. Anderson, P., et al.: Sensitivity of the space debris environment to large constellations and small satellites. In: Proceedings of the 7th European Conferences on Space Debris, Darmstadt, Germany (2017)

  • Liou, J.-C., Rossi, A, Krag, H., Raj, X.J., Anilkumar, A.K., Hanada, T., et al.: Stability of the future LEO environment. Inter-Agency Space Debris Co-ordination Committee, AI 27.1 Report, IADC-12-08. http://www.iadc-online.org (2013). Accessed 28 April 2017

  • Merson, R.H.: The motion of a satelilte in an axi-symmetric gravitational field. Geophys. J 4, 17–52 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rosengren, A.J., Alessi, E.M., Rossi, A., Valsecchi, G.B.: Chaos in navigation satellite orbits caused by the perturbed motion of the Moon. Mon. Not. R. Astron. Soc. 449, 3522–3526 (2015)

    Article  ADS  Google Scholar 

  • Rosengren, A.J., Skoulidou, D.K., Tsiganis, K., Voyatzis, G.: Dynamical cartography of Earth satellite orbits. Adv. Space Res. (2017, submitted)

  • Rossi, A., Anselmo, L., Pardini, C., Jehn, R., Valsecchi, G.B.: The new space debris mitigation (SDM 4.0) long term evolution code. In: Proceedings of the 5th European Conference on Space Debris, Darmstadt, Germany, Paper ESA SP-672 (2009)

  • Rossi, A., Lewis, H., White, A., Anselmo, L., Pardini, C., Krag, H., et al.: Analysis of the consequences of fragmentations in low and geostationary orbits. Adv. Space Res. 57, 1652–1663 (2016)

    Article  ADS  Google Scholar 

  • Rossi, A., and the ReDSHIFT team: The H2020 Project ReDSHIFT: overview, first results and perspectives. In: Proceedings of the 7th European conference on space debris, Darmstadt, Germany (2017)

  • Roy, A.E.: Orbital Motion. Institute of Physics Publishing, Bristol (2005)

    MATH  Google Scholar 

  • Schettino, G., Alessi, E.M., Rossi, A., Valsecchi G.B.: Characterization of Low Earth Orbit dynamics by perturbation frequency analysis. In: 68th International Astronautical Congress, Adelaide, Australia, Paper Number IAC-17-C1.9.2 (2017)

  • Skoulidou, D.K., Rosengren, A.J., Tsiganis, K., Voyatzis, G.: Long-term dynamics of artificial Earth satellites. In: Proceedings of the First Greek-Austrian Workshop on Extrasolar Planetary Systems, Ammouliani, Greece (2016)

  • Skoulidou, D.K., Rosengren, A.J., Tsiganis, K., Voyatzis, G.: Cartographic study of the MEO phase space for passive debris removal. In: Proceedings of the 7th European Conference on Space Debris, Darmstadt, Germany (2017)

  • Skoulidou, D.K., Rosengren, A.J., Tsiganis, K., Voyatzis, G.: Dynamical Lifetime Survey of Geostationary Transfer Orbits. Celest. Mech. Dyn. Astron. (2018, submitted)

  • Urrutxua, H., Sanjurjo-Rivo, M., Paláez, J.: DROMO propagator revisited. Celest. Mech. Dyn. Astron. 124, 1–31 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is funded through the European Commission Horizon 2020, Framework Programme for Research and Innovation (2014–2020), under the ReDSHIFT project (Grant Agreement No. 687500). We are grateful to Bruno Carli, Camilla Colombo, Ioannis Gkolias, Kleomenis Tsiganis, Despoina Skoulidou and Volker Schaus for the useful discussions. E.M.A. is also grateful to Florent Deleflie for the period spent in Lille.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Maria Alessi.

Additional information

This article is part of the topical collection on Close Approaches and Collisions in Planetary Systems.

Guest Editors: Rudolf Dvorak, Christoph Lhotka and Alessandra Celletti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alessi, E.M., Schettino, G., Rossi, A. et al. Natural highways for end-of-life solutions in the LEO region. Celest Mech Dyn Astr 130, 34 (2018). https://doi.org/10.1007/s10569-018-9822-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9822-z

Keywords

Navigation