Skip to main content
Log in

Explicit methods in extended phase space for inseparable Hamiltonian problems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bulirsch, R., Stoer, J.: Numerical treatment of ordinary differential equations by extrapolation methods. Numerische Mathematik 8, 1–13 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  • Deuflhard, P., Bornemann, F.: Scientific Computing with Ordinary Differential Equations, Texts in Applied Mathematics, vol. 42. Springer, New York (2002)

    Book  Google Scholar 

  • Gragg, W.: On extrapolation algorithms for ordinary initial value problems. SIAM J. Numer. Anal. 2, 384–403 (1965)

    ADS  MATH  MathSciNet  Google Scholar 

  • Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2006)

    Google Scholar 

  • Hellström, C., Mikkola, S.: Explicit algorithmic regularization in the few-body problem for velocity-dependent perturbations. Celest. Mech. Dyn. Astron. 106, 143–156 (2010)

    Article  ADS  MATH  Google Scholar 

  • Hindmarsh, A.: LSODE and LSODI, two new initial value ordinary differential equation solvers. ACM Signum Newsl. 15, 10–11 (1980)

    Article  Google Scholar 

  • Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python. http://www.scipy.org/ (2001)

  • Kahan, W., Li, R.: Composition constants for raising the orders of unconventional schemes for ordinary differential equations. Math. Comp. Am. Math. Soc. 66, 1089–1099 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Lanczos, C.: The Variational Principles of Mechanics, 3rd ed. Mathematical Expositions, vol. 4. University of Toronto Press, Toronto (1966)

    Google Scholar 

  • McLachlan, R., Quispel, R.: Splitting methods. Acta Numer. 11, 341–434 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Mikkola, S., Aarseth, S.: A time-transformed leapfrog scheme. Celest. Mech. Dyn. Astron. 84, 343–354 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Mikkola, S., Merritt, D.: Algorithmic regularization with velocity-dependent forces. Mon. Not. R. Astron. Soc. 372, 219–223 (2006)

    Article  ADS  Google Scholar 

  • Mikkola, S., Merritt, D.: Implementing few-body algorithmic regularization with post-newtonian terms. Astron. J. 135, 2398 (2008)

    Article  ADS  Google Scholar 

  • Mikkola, S., Tanikawa, K.: Algorithmic regularization of the few-body problem. Mon. Not. R. Astron. Soc. 310, 745–749 (1999a)

    Article  ADS  Google Scholar 

  • Mikkola, S., Tanikawa, K.: Explicit symplectic algorithms for time-transformed Hamiltonians. Celest. Mech. Dyn. Astron. 74, 287–295 (1999b)

    Article  ADS  MATH  Google Scholar 

  • Parlitz, U., Lauterborn, W.: Period-doubling cascades and devil’s staircases of the driven van der Pol oscillator. Phys. Rev. A. 36, 1428 (1987)

    Article  ADS  Google Scholar 

  • Preto, M., Tremaine, S.: A class of symplectic integrators with adaptive time step for separable Hamiltonian systems. Astron. J. 118, 2532 (1999)

    Article  ADS  Google Scholar 

  • Radhakrishnan, K., Hindmarsh, A.: Description and use of LSODE, the Livermore solver for ordinary differential equations. NASA, Office of Management, Scientific and Technical Information Program (1993)

  • Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • van der Pol, B.: VII. Forced oscillations in a circuit with non-linear resistance (reception with reactive triode). Philos. Mag. 3, 65–80 (1927)

    Article  Google Scholar 

  • Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A. 150, 262–268 (1990)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

I am grateful to the anonymous reviewers for suggestions and comments that have greatly improved this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauli Pihajoki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pihajoki, P. Explicit methods in extended phase space for inseparable Hamiltonian problems. Celest Mech Dyn Astr 121, 211–231 (2015). https://doi.org/10.1007/s10569-014-9597-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9597-9

Keywords

Navigation