Skip to main content
Log in

Quasi-terminator orbits near primitive bodies

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Quasi-terminator orbits are introduced as a class of quasi-periodic trajectories in the solar radiation pressure (SRP) perturbed Hill dynamics. These orbits offer significant displacements along the Sun-direction without the need for station-keeping maneuvers. Thus, quasi-terminator orbits have application to primitive-body mapping missions, where a variety of observation geometries relative to the Sun (or other directions) can be achieved. This paper describes the characteristics of these orbits as a function of normalized SRP strength and invariant torus frequencies and presents a discussion of mission design considerations for a global surface mapping orbit design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. References are given when available, otherwise the parameters have been approximated using the authors’ best guess. In the latter cases, the \(\approx \) symbol is used before the numerical data given.

  2. Generally, perturbations in the span of the center manifold evolve on a invariant torus described by three frequencies. This more general motion is not explored in this paper. The two 4-D sub-manifolds of invariant tori studied here are invariant slices in this larger quasi-periodic space. The method used to follow the tori in Eq. 9 ensures that the tori found lie on a sub-manifold where motion is described by only two frequencies.

  3. This is true, but for low \(m/n\) ratios (\(\ne 1\)), this stability seems to be marginal in a non-linear sense. When such a solution to the multiple-shooting corrector algorithm is re-propagated as a single trajectory, the match between starting and ending states is often noticeably less accurate than usual.

  4. Recall from Sect. 5.4 that if \(C\) is larger than the maximum \(C\) for the corresponding terminator family, the quasi-terminator orbits near the RTO are not embedded in the center manifold of the terminator orbit, and thus, do not necessarily have consistent geometries with those shown in Figs. 5 and 6.

  5. This may not be the case for some RTO families at low \(\beta \) values, but RTOs are not usually of interest in these dynamical scenarios because the orbit periods are very long. Further, for small \(\beta \), the dominant perturbation is often the irregular gravity of the primitive body, which is a scenario where the assumptions in this work do not apply.

  6. In a real mission application, this minimum radius should be carefully chosen based on factors including primitive body mass distribution, orbit maintenance frequency, and duration in orbit.

  7. The Sun-relative geometry describes the relative geometry between the orbiting spacecraft, primitive-body center-of-mass, and the Sun. It is independent of the motion of the primitive body surface. As such, actual global surface mapping performance for a particular orbit depends upon the body spin orientation and state.

References

  • Abe, S., Mukai, T., Hirata, N., Barnouin-Jha, O.S., Cheng, A.F., Demura, H., Gaskell, R.W., Hashimoto, T., Hiraoka, K., Honda, T., Kubota, T., Matsuoka, M., Mizuno, T., Nakamura, R., Scheeres, D.J., Yoshikawa, M.: Mass and local topography measurements of Itokawa by Hayabusa. Science 312, 1344–1347 (2006)

    Article  ADS  Google Scholar 

  • Baer, J., Chesley, S.: Astrometric masses of 21 asteroids, and an integrated asteroid ephemeris. Celest. Mech. Dyn. Astron. 100, 27–42 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Broschart, S.B., Villac, B.F.: Identification of non-chaotic terminator orbits near 6489 Golevka. Adv. Astron. Sci. 134, 861–880 (2009)

    Google Scholar 

  • Broschart, S.B., Scheeres, D.J., Villac, B.F.: New families of multi-revolution terminator orbits near small bodies. Adv. Astron. Sci. 135, 1685–1702 (2010)

    Google Scholar 

  • Broucke, R.A.: Stability of periodic orbits in the elliptic restricted three-body problem. AIAA J. 7, 1003–1009 (1969)

    Article  ADS  MATH  Google Scholar 

  • Chesley, S.R., Nolan, M.C., Farnocchia, D., Milani, A., Emery, J., Vokrouhlicky, D., Lauretta, D.S., Taylor, P.A., Benner, L.A.M., Giorgini, J.D., Brozovic, M., Busch, M.W., Margot, J.-L., Howell, E.S., Naidu, S.P., Valsecchi, G.B., Bernardi, F.: The trajectory dynamics of near-Earth Asteroid 101955 (1999 RQ36). LPI Contrib. 1667, 6470 (2012)

    ADS  Google Scholar 

  • Dankowicz, H.: Some special orbits in the two-body problem with radiation pressure. Celest. Mech. Dyn. Astron. 58, 353–370 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • Demura, H., Kobayashi, S., Nemoto, E., Matsumoto, N., Furuya, M., Yukishita, A., Muranaka, N., Morita, H., Shirakawa, K., Maruya, M., Ohyama, H., Uo, M., Kubota, T., Hashimoto, T., Kawaguchi, J., Fujiwara, A., Saito, J., Sasaki, S., Miyamoto, H., Hirata, N.: Pole and global shape of 25143 Itokawa. Science 312, 1347–1349 (2006)

    Article  ADS  Google Scholar 

  • Glassmeier, K.-H., Boehnhardt, H., Koschny, D., Kührt, E., Richter, I.: The Rosetta mission: flying towards the origin of the solar system. Space Sci. Rev. 128, 1–21 (2007)

    Article  ADS  Google Scholar 

  • Gómez, G., Mondelo, J.M.: The dynamics around the collinear equilibrium points of the RTBP. Physica 154, 283–321 (2001)

    Google Scholar 

  • Hasegawa, S., Müller, T.G., Kawakami, K., Kasuga, T., Wada, T., Ita, Y., Takato, N., Terada, H., Fujiyoshi, T., Abe, M.: Albedo, size, and surface characteristics of Hayabusa-2 sample-return target 162173 1999 JU3 from AKARI and Subaru observations. Publ. Astron. Soc. Jpn. 60, 399 (2008)

    ADS  Google Scholar 

  • Howell, K.C., Breakwell, J.V.: Almost rectilinear halo orbits. Celest. Mech. 6, 29–52 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • JPL SSD Group: JPL small-body database browser. National Aeronautics and Space Administration Jet Propulsion Laboratory. http://ssd.jpl.nasa.gov/sbdb.cgi (2012). Accessed Sept 2012

  • Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Rabinowitz, P. (ed.) Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. Academic Press, New York (1977)

    Google Scholar 

  • Kolemen, E., Kasdin, N., Gurfil, P.: Multiple Poincar sections method for finding the quasiperiodic orbits of the restricted three body problem. Celest. Mech. Dyn. Astron. 112, 47–74 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Lamy, P.L., Toth, I., Weaver, H.A., Jorda, L., Kaasalainen, M., Gutiérrez, P.J.: Hubble space telescope observations of the nucleus and inner coma of comet 67P/Churyumov–Gerasimenko. Astron. Astrophys. 458, 669–678 (2006)

    Article  ADS  Google Scholar 

  • Lauretta, D.S., The OSIRIS-Rex Team: An overview of the OSIRIS-REx asteroid sample return mission. In: Lunar and Planetary Institute Science Conference Abstracts, vol. 43, p. 2491 (2012)

  • Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics, vol. 1. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  • Liu, Y.-Y., Villac, B.: Periodic orbit families in the Hill’s three-body problem with solar radiation pressure. Adv. Astron. Sci. 136, 285–300 (2010)

    Google Scholar 

  • Miller, J.K., Konopliv, A.S., Antreasian, P.G., Bordi, J.J., Chesley, S., Helfrich, C.E., Owen, W.M., Wang, T.C., Williams, B.G., Yeomans, D.K.: Determination of shape, gravity, and rotational state of asteroid 433 Eros. Icarus 155, 3–17 (2002)

    Article  ADS  Google Scholar 

  • Montenbruck, O., Gill, E.: Satellite Orbits: Models, Methods, Applications. Springer, Berlin (2001)

    Google Scholar 

  • NASA Near Earth Object Program: 2000 SG344 impact risk. National Aeronautics and Space Administration. http://neo.jpl.nasa.gov/risk/2000sg344.html (2012). Accessed Oct 2012

  • Nolan, M.C., Magri, C., Howell, E.S., Benner, L.A.M., Giorgini, J.D., Hergenrother, C.W., Hudson, R.S., Lauretta, D.S., Margot, J.-L., Ostro, S.J., Scheeres, D.J.: Shape model and surface properties of the OSIRIS-REx target Asteroid (101955) Bennu from radar and lightcurve observations. Icarus 226, 629–640 (2013)

  • Olikara, Z.P., Scheeres, D.J.: Numerical methods for computing quasi-periodic orbits and their stability in the restricted three-body problem. Presented at the 1st IAA Conference on Dynamics and Control of Space Systems, Paper 08–10 (2010)

  • Scheeres, D.J.: Satellite dynamics about asteroids. Adv. Astron. Sci. 87, 275–292 (1994)

    Google Scholar 

  • Scheeres, D.J.: Satellite dynamics about small bodies: averaged solar radiation pressure effects. J. Astron. Sci. 47, 25–46 (1999)

    MathSciNet  Google Scholar 

  • Scheeres, D.J., Marzari, F.: Spacecraft dynamics in the vicinity of a comet. J. Astron. Sci. 50, 35–52 (2002)

    Google Scholar 

  • Scheeres, D.J.: Orbit mechanics around asteroids and comets. J. Guid. Control Dyn. 35, 987–997 (2012)

    Article  Google Scholar 

  • Thomas, P.C., Binzel, R.P., Gaffey, M.J., Storrs, A.D., Wells, E., Zellner, B.H.: Impact excavation on asteroid 4 vesta: hubble space telescope results. Science 277, 1492–1495 (1997)

    Article  ADS  Google Scholar 

  • Villac, B.F., Broschart, S.B.: Applications of chaoticity indicators to stability analysis around small bodies. Adv. Astron. Sci. 134, 1813–1832 (2009)

    Google Scholar 

  • Yoshikawa, M., Minamino, H., Tsuda, Y., Abe, M., Nakazawa, S., The Hayabusa2 Project Team: Hayabusa2—New challenge of next asteroid sample return mission. LPI Contrib. 1667, 6188 (2012)

Download references

Acknowledgments

The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors thank Zubin Olikara for the insights he shared with us on torus computation and the dynamical structure of this problem. They also thank Benjamin Villac for some early discussions on the dynamical structure around terminator orbits that led to this work. The authors further thank Benjamin and Roby Wilson for their helpful comments on a draft manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Broschart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broschart, S.B., Lantoine, G. & Grebow, D.J. Quasi-terminator orbits near primitive bodies. Celest Mech Dyn Astr 120, 195–215 (2014). https://doi.org/10.1007/s10569-014-9574-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9574-3

Keywords

Navigation