Skip to main content
Log in

A numerical study of the hyperbolic manifolds in a priori unstable systems. A comparison with Melnikov approximations

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Using numerical methods we study the hyperbolic manifolds in a model of a priori unstable dynamical system. We compare the numerically computed manifolds with their analytic expression obtained with the Melnikov approximation. We find that, at small values of the perturbing parameter, the topology of the numerically computed stable and unstable manifolds is the same as in their Melnikov approximation. Increasing the value of the perturbing parameter, we find that the stable and unstable manifolds have a peculiar topological transition. We find that this transition occurs near those values of the perturbing parameter for which the error terms of Melnikov approximations have a sharp increment. The transition value is also correlated with a change in the behaviour of dynamical quantities, such as the largest Lyapunov exponent and the diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold V.I.: Instability of dynamical systems with several degrees of freedom. Sov. Math. Dokl. 6, 581–585 (1964)

    Google Scholar 

  • Chierchia L., Gallavotti G.: Drift and diffusion in phase space. Ann. Inst. H.Poincaré 60, 1–144 (1994)

    MATH  MathSciNet  Google Scholar 

  • Dankowicz H.: Escape of particle orbiting asteroids in the presence of radiation pressure through separatrix splitting. Celest. Mech. Dyn. Astron. 67, 63–85 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Easton R.W.: Capture orbits and Melnikov integrals in the planar three-body problem. Celest. Mech. Dyn. Astron. 50, 283–297 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  • Efthymiopoulos C., Contopoulos G., Voglis N.: Cantori, islands and asymptotic curves in the stickiness region. Celest. Mech. Dyn. Astron. 73(1/4), 221–230 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Froeschlé C., Lega E., Gonczi R.: Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astron. 67, 41–62 (1997)

    Article  MATH  ADS  Google Scholar 

  • Froeschlé C., Guzzo M., Lega E.: Graphical evolution of the Arnold Web: from order to Chaos. Science 289(5487), 2108–2110 (2000)

    Article  ADS  Google Scholar 

  • Froeschlé C., Lega E.: On the structure of symplectic mappings. The fast Lyapunov indicator: a very sensitive tool. Celest. Mech. Dyn. Astron. 78, 167–195 (2000)

    Article  MATH  ADS  Google Scholar 

  • Froeschlé C., Guzzo M., Lega E.: Local and global diffusion along resonant lines in discrete quasi–integrable dynamical systems. Celest. Mech. Dyn. Astron. 92, 243–255 (2005)

    Article  MATH  ADS  Google Scholar 

  • Guzzo M., Lega E., Froeschlé C.: On the numerical detection of the effective stability of chaotic motions in quasi-integrable systems. Physica D 163, 1–25 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Guzzo M., Lega E., Froeschlé C.: First numerical evidence of global Arnold diffusion in quasi–integrable systems. DCDS B 5, 687–698 (2005)

    Article  MATH  Google Scholar 

  • Guzzo M., Lega E., Froeschlé C.: Diffusion and stability in perturbed non-convex integrable systems. Nonlinearity 19, 1049–1067 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Guzzo, M.: Mechanisms for the production of chaos in dynamical systems. In: Proceedings of ’Scottish Universities Summer Schools in Physics No. 62 Extra-Solar Planets: the detection, formation, evolution and dynamics of planetary systems’ held in Skye in 28th May–8th June (2007). Accepted for publication

  • Guzzo M.: Chaos and diffusion in dynamical systems through stable–unstable manifolds. In: Perozzi, E., Ferraz-Mello, S. (eds) Space Manifold Dynamics: Novel spaceways for science and exploration, pp. 97–112. Springer, New York (2010)

    Chapter  Google Scholar 

  • Guzzo M., Lega E., Froeschlé C.: A numerical study of the topology of normally hyperbolic invariant manifolds supporting Arnold diffusion in quasi-integrable systems. Physica D 238, 1797–1807 (2009a)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Guzzo M., Lega E., Froeschlé C.: A numerical study of Arnold diffusion in a priori unstable systems. Commun. Math. Phys. 290, 557–576 (2009b)

    Article  MATH  ADS  Google Scholar 

  • Hasselblatt B., Pesin Y.: Partially Hyperbolic Dynamical Systems. Handbook of Dynamical Systems, vol. 1B, pp. 1–55. Elsevier B. V., Amsterdam (2006)

    Google Scholar 

  • Hirsch M.W., Pugh C.C., Shub M.: Invariant Manifolds. Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977)

    Google Scholar 

  • Lega E., Guzzo M., Froeschlé C.: Detection of Arnold diffusion in Hamiltonian systems. Physica D 182, 179–187 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • MacKay R.S., Meiss J.D., Percival I.C.: Transport in Hamiltonian systems. Physica D 13, 55–81 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Melnikov V.K.: On the stability of a center for time-periodic perturbations. Trudy Moskov. Mat. Obsc. 12, 3–52 (1963)

    MathSciNet  Google Scholar 

  • Poincaré H.: Sur le problème des trois corps et les équations de la dynamique. Acta Mathematica 13, 1–271 (1890)

    Google Scholar 

  • Simó C.: On the analytical and numerical approximation of invariant manifolds. In: Benest, D., Froeschlé, Cl. (eds) Modern Methods in Celestial Mechanics, pp. 285–329. Ed. Frontières, Gif-sur-Yvette (1989)

    Google Scholar 

  • Treschev D.: Trajectories in a neighborhood of asymptotic surfaces of a priori unstable Hamiltonian systems. Nonlinearity 15, 2033–2052 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Treschev D.: Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity 17, 1803–1841 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Villac B.F.: Using FLI maps for preliminary spacecraft trajectory design in multi-body environments. Celest. Mech. Dyn. Astron. 102, 29–48 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Lega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lega, E., Guzzo, M. & Froeschlé, C. A numerical study of the hyperbolic manifolds in a priori unstable systems. A comparison with Melnikov approximations. Celest Mech Dyn Astr 107, 115–127 (2010). https://doi.org/10.1007/s10569-010-9265-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9265-7

Keywords

Navigation