Skip to main content

Chaos and Diffusion in Dynamical Systems Through Stable-Unstable Manifolds

  • Conference paper
  • First Online:
Space Manifold Dynamics

Abstract

The phase-space structure of conservative non-integrable dynamical systems is characterized by a mixture of stable invariant sets and unstable structures which possibly support diffusion. In these situation, many practical and theoretical questions are related to the problem of finding orbits which connect the neighbourhoods of two points A and B of the phase-space. Hyperbolic dynamics has provided in the last decades many tools to tackle the problem related to the existence and the properties of the so called stable and unstable manifolds, which provide natural paths for the diffusion of orbits in the phase-space. In this article we review some basic results of hyperbolic dynamics, through the analysis of the stable and unstable manifolds in basic mathematical models, such as the symplectic standard map, up to more complicate models related to the Arnold diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold V.I. (1964), Instability of dynamical systems with several degrees of freedom, Sov. Math. Dokl., 6, 581–585.

    Google Scholar 

  2. Arnold V.I. (1963a), Proof of a theorem by A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv., 18, 9.

    Article  Google Scholar 

  3. Chirikov, B.V. (1979), An universal instability of many dimensional oscillator system. Phys. Reports, 52, 265.

    Article  MathSciNet  ADS  Google Scholar 

  4. Froeschlé C., Lega E. and Gonczi R. (1997), Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. and Dynam. Astron., 67, 41–62.

    Article  MATH  ADS  Google Scholar 

  5. Froeschlé C., Guzzo M. and Lega E. (2000), Graphical Evolution of the Arnold Web: From Order to Chaos, Science, 289, n. 5487.

    Google Scholar 

  6. Froeschlé C., Guzzo M. and Lega E. (2005), Local and global diffusion along resonant lines in discrete quasi–integrable dynamical systems, Celest. Mech. and Dynam. Astron., 92, n. 1-3, 243-255.

    Article  MATH  ADS  Google Scholar 

  7. Guzzo M., Lega E. and Froeschlé C. (2002), On the numerical detection of the effective stability of chaotic motions in quasi-integrable systems, Physica D, 163, n. 1-2, 1-25.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Guzzo M., Lega E. and Froeschlé C. (2005), First Numerical Evidence of Arnold diffusion in quasi–integrable systems, DCDS B, 5, n. 3.

    Google Scholar 

  9. Guzzo M., Lega E. and Froeschlé C. (2006), Diffusion and stability in perturbed non-convex integrable systems. Nonlinearity, 19, 1049–1067.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Kolmogorov, A.N. (1954), On the conservation of conditionally periodic motions under small perturbation of the hamiltonian, Dokl. Akad. Nauk. SSSR, 98, 524.

    MathSciNet  Google Scholar 

  11. Lega E., Guzzo M. and Froeschlé C. (2003), Detection of Arnold diffusion in Hamiltonian systems, Physica D, 182, 179–187.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Lega E., Froeschlé C. and Guzzo M. (2007), Diffusion in Hamiltonian quasi–integrable systems.” In Lecture Notes in Physics, “Topics in gravitational dynamics”, Benest, Froeschlé, Lega eds., Springer.

    Google Scholar 

  13. Hirsch M.W., Pugh C.C. and Shub M. (1977), Invariant Manifolds. Lecture Notes in Mathematics, 583. Springer-Verlag, Berlin-New York.

    Google Scholar 

  14. Laskar, J. (1989), A numerical experiment on the chaotic behaviour of the solar system, Nature, 338, 237–238.

    Article  ADS  Google Scholar 

  15. Laskar, J. (1990), The chaotic motion of the solar system - A numerical estimate of the size of the chaotic zones. Icarus 88, 266–291.

    Article  ADS  Google Scholar 

  16. Llibre, J. Sim, C. (1980), Some homoclinic phenomena in the three-body problem. J. Diff. Eq 37, no. 3, 444–465.

    Article  MATH  MathSciNet  Google Scholar 

  17. Moser J. (1958), On invariant curves of area-preserving maps of an annulus, Comm. Pure Appl. Math., 11, 81–114.

    Article  MATH  MathSciNet  Google Scholar 

  18. Poincaré H. (1892), Les méthodes nouvelles de la mécanique celeste, Gauthier–Villars, Paris.

    Google Scholar 

  19. Simo C. (1989), On the analytical and numerical approximation of invariant manifolds, in Modern Methods in Celestial Mechanics, D. Benest, Cl. Froeschlé eds, Editions Frontières, 285-329.

    Google Scholar 

  20. Smale S. (1967), Differentiable dynamical systems, Bulletin of the American Mathematical Society, 73, 747-817.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Guzzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Guzzo, M. (2010). Chaos and Diffusion in Dynamical Systems Through Stable-Unstable Manifolds. In: Perozzi, E., Ferraz-Mello, S. (eds) Space Manifold Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0348-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0348-8_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0347-1

  • Online ISBN: 978-1-4419-0348-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics