Skip to main content
Log in

The root of Actinidia chinensis inhibits hepatocellular carcinomas cells through LAMB3

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The root of Actinidia chinensis, as traditional Chinese medicine, has been shown to inhibit cell proliferation in numerous cancer cells. However, the mechanisms underlying its inhibitory activity remain unclear. Death rates of hepatocellular carcinoma (HCC) are increasing, but therapies for advanced HCC are not well developed. We choose the extract from root of Actinidia chinensis (ERAC) to treat the HCC cell lines in vitro, displaying distinct effects on cell proliferation, S-phase cell cycle arrest, and apoptosis. LAMB3, the gene encoding laminin subunit beta-3, plays a key role in the proliferation suppression and S-phase cell cycle arrest of HepG2 cells treated with ERAC. The downstream genes ITGA3, CCND2, and TP53 in LAMB3 pathway show the same response to ERAC as LAMB3. Thus, LAMB3 pathways, along with extracellular matrix-receptor interaction, pathways in cancer, and focal adhesion, are involved in the ERAC-induced suppressive response in HepG2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chung H, Suh EK, Han IO, & Oh ES. Keratinocyte-derived laminin-332 promotes adhesion and migration in melanocytes and melanoma. J Biol Chem, 2011;286:13438-47.

  • De Lope CR, Tremosini S, Forner A, Reig M, Bruix J. Management of HCC. J Hepatol. 2012;56(Suppl 1):S75–87.

    Article  PubMed  CAS  Google Scholar 

  • Farhy C, Elgart M, Shapira Z, Oron-Karni V, Yaron O, Menuchin Y, et al. Pax6 is required for normal cell-cycle exit and the differentiation kinetics of retinal progenitor cells. PLoS One. 2013;8:e76489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–55.

    Article  PubMed  Google Scholar 

  • Gong Y. Identifying the targets for treatment of liver fibrosis and hepatocellular carcinoma from both Western medicine and Chinese medicine. Chin J Integr Med. 2012;18:245–9.

    Article  PubMed  Google Scholar 

  • Gu S, Li G, Zhang X, Yan J, Gao J, An X, et al. Aberrant expression of long noncoding RNAs in chronic thromboembolic pulmonary hypertension. Mol Med Rep. 2015;11:2631–43.

    Article  PubMed  CAS  Google Scholar 

  • Guha G, Lu W, Li S, Liang X, Kulesz-Martin MF, Mahmud T, et al. Novel pactamycin analogs induce p53 dependent cell-cycle arrest at S-phase in human head and neck squamous cell carcinoma (HNSCC) cells. PLoS One. 2015;10:e0125322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gustafsson M, Nestor CE, Zhang H, Barabasi AL, Baranzini S, Brunak S, et al. Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome Med. 2014;6:82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubbi ME, Gilkes DM, Hu H, Kshitiz, Ahmed I, Semenza GL. Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1alpha to promote cell-cycle progression. Proc Natl Acad Sci U S A. 2014;111:E3325–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huo J, Qin F, Cai X, Ju J, Hu C, Wang Z, et al. Chinese medicine formula “Weikang Keli” induces autophagic cell death on human gastric cancer cell line SGC-7901. Phytomedicine. 2013;20:159–65.

    Article  PubMed  Google Scholar 

  • Ibragimova I, Ibanez DE Caceres I, Hoffman AM, Potapova A, Dulaimi E, Al-Saleem T, et al. Global reactivation of epigenetically silenced genes in prostate cancer. Cancer Prev Res (Phila). 2010;3:1084–92.

    Article  CAS  Google Scholar 

  • Kishimoto K, Fujimoto J, Takeuchi M, Yamamoto H, Ueki T, Okamoto E. Telomerase activity in hepatocellular carcinoma and adjacent liver tissues. J Surg Oncol. 1998;69:119–24.

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Ryu SW, Bae SJ, Park TH, Kwon K, Noh YH, et al. Cross-platform meta-analysis of multiple gene expression profiles identifies novel expression signatures in acquired anthracycline-resistant breast cancer. Oncol Rep. 2015;33:1985–93.

    Article  PubMed  CAS  Google Scholar 

  • Lin HY, Kuo YC, Weng YI, Lai IL, Huang TH, Lin SP, et al. Activation of silenced tumor suppressor genes in prostate cancer cells by a novel energy restriction-mimetic agent. Prostate. 2012;72:1767–78.

    Article  PubMed  CAS  Google Scholar 

  • Linzen U, Lilischkis R, Pandithage R, Schilling B, Ullius A, Luscher-Firzlaff J, et al. ING5 is phosphorylated by CDK2 and controls cell proliferation independently of p53. PLoS One. 2015;10:e0123736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu T, Zhang S, Chen J, Jiang K, Zhang Q, Guo K, et al. The transcriptional profiling of glycogenes associated with hepatocellular carcinoma metastasis. PLoS One. 2014;9:e107941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lou L, Lu D, Hu Z, Hu Z, Zheng F. Anti-tumor activity of Actinidia chinensis Planch against hepatocellular carcinoma. Chin Arch Tradit Chin Med. 2009;27:1509–11.

    Google Scholar 

  • MONTASERI S, ZARE-MIRAKABAD F, MOGHADAM-CHARKARI N. RNA-RNA interaction prediction using genetic algorithm. Algorithms Mol Biol. 2014;9:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song WY, Xu GH, Zhang GJ. Effect of Actinidia chinensis planch polysaccharide on the growth and apoptosis, and p-p38 expression in human gastric cancer SGC-7901 cells. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2014;34:329–33.

    PubMed  Google Scholar 

  • Tarocchi M, Polvani S, Peired AJ, Marroncini G, Calamante M, Ceni E, et al. Telomerase activated thymidine analogue pro-drug is a new molecule targeting hepatocellular carcinoma. J Hepatol. 2014;61:1064–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi M, Nandana S, Yamashita H, Ganesan R, Kirchhofer D, & Quaranta V. Laminin-332 is a substrate for hepsin, a protease associated with prostate cancer progression. J Biol Chem, 2008;283:30576–84.

  • Walz C, Crowley BJ, Hudon HE, Gramlich JL, Neuberg DS, Podar K, et al. Activated Jak2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem. 2006;281:18177–83.

    Article  PubMed  CAS  Google Scholar 

  • Wang CJ, Xiao CW, You TG, Zheng YX, Gao W, Zhou ZQ, et al. Interferon-alpha enhances antitumor activities of oncolytic adenovirus-mediated IL-24 expression in hepatocellular carcinoma. Mol Cancer. 2012;11:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang XM, Li J, Yan MX, Liu L, Jia DS, Geng Q, et al. Integrative analyses identify osteopontin, LAMB3 and ITGB1 as critical pro-metastatic genes for lung cancer. PLoS One, 2013;8:e55714.

  • Wang K, Liang C, Liu J, Xiao H, Huang S, Xu J, et al. Prediction of piRNAs using transposon interaction and a support vector machine. BMC Bioinformatics. 2014;15:6593.

    Google Scholar 

  • Young AL, Bailey EE, Colaco SM, Engler DE, & Grossman ME. Anti-laminin-332 mucous membrane pemphigoid associated with recurrent metastatic prostate carcinoma: hypothesis for a paraneoplastic phenomenon. Eur J Dermatol. 2011;21:401–4.

  • Zhu AX. New agents on the horizon in hepatocellular carcinoma. Ther Adv Med Oncol. 2013;5:41–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duojiao Wu.

Electronic supplementary material

Supplemental Figure 1

A, quality control of microarray experiments. B, the expression profile of genes were shown as 0.2 fold change per box in the screen for ERAC action genes of LM3. C, the expression profile of genes were shown as 0.2 fold change per box in the screen for ERAC action genes of HepG2. (PDF 62.5 kb)

Supplemental Figure 2

LAMB3 involved pathways analyses of ERAC action. A, Quantitation of important laminin isoforms of ERAC action. B, Quantitation of important genes in LAMB3 involved pathways. (PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Wang, L. & Wu, D. The root of Actinidia chinensis inhibits hepatocellular carcinomas cells through LAMB3. Cell Biol Toxicol 34, 321–332 (2018). https://doi.org/10.1007/s10565-017-9416-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-017-9416-7

Keywords

Navigation