Skip to main content
Log in

Semi-synthetic product dihydroartemisinin inhibited fibronectin-1 and integrin-β1 and interfered with the migration of HCCLM6 cells via PI3K-AKT pathway

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

Dihydroartemisinin (DHA), a predominant phytoconstituent in Artemisia annua L. (a plant widely used as a traditional medicine in China), inhibits lung tumorigenesis and metastasis. However, its anticancer effect against hepatocellular carcinoma has not yet been investigated. In this study, the anti-tumor potential of DHA was evaluated in vitro against the hepatocellular carcinoma HCCLM6 cell line.

Results

DHA (1–100 μM) treatment suppressed the cell proliferation in dose-dependently. In addition, expression of all genes, involved in cellular proliferation (e.g. E2F1, BCL2, PCNA, MKI67 and CCNE2) and cellular motility (e.g. DOCK1, ITGA2, VCL, MMP2, FN1), was significantly downregulated by DHA (50 and 100 μM). Global gene expression profile identified 1731 differentially expressed genes (DEGs); among them, 211 were up-regulated and 1520 were down-regulated. Besides, the extracellular matrix (ECM)-receptor interaction, focal adhesion, regulation of actin cytoskeleton and TNF pathways were enriched by DEGs. Based on the KEGG signal pathway enrichment, the FN1 and integrin-β1 could be a potential target for DHA for inhibiting proliferation. The expression of FN1 and integrin-β1 was further analyzed by the qPCR, immunohistochemistry and Western blot assay in vitro and in vivo. The results indicated that DHA decreased the FN1 and integrin-β1 protein levels and interfered with PI3K-AKT signal transduction pathway.

Conclusions

Our findings revealed that DHA could inhibit proliferation and migration of human hepatocellular carcinoma cells targeting FN1 and ITGB1 via the PI3K-AKT pathway. Therefore, DHA might be a novel drug with a potential effect against liver tumorigenesis and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data used to support the findings of this study are included within the article.

References

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (11832008, 11532004, 11902058) and Innovation and Attracting Talents Program for College and University (“111” Project) (Grant No. B06023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunli Wang or Li Yang.

Ethics declarations

Conflict of interest

All authors read and approved the final manuscript. We declare that the authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Gao, Y., Wu, J. et al. Semi-synthetic product dihydroartemisinin inhibited fibronectin-1 and integrin-β1 and interfered with the migration of HCCLM6 cells via PI3K-AKT pathway. Biotechnol Lett 42, 917–926 (2020). https://doi.org/10.1007/s10529-020-02839-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-02839-8

Keywords

Navigation