Skip to main content

Advertisement

Log in

miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The main aim of this study was to evaluate whether microRNA (miRNA) profiling could be a useful tool for in vitro developmental neurotoxicity (DNT) testing. Therefore, to identify the possible DNT biomarkers among miRNAs, we have studied the changes in miRNA expressions in a mixed neuronal/glial culture derived from carcinoma pluripotent stem cells (NT2 cell line) after exposure to methyl mercury chloride (MeHgCl) during the process of neuronal differentiation (2–36 days in vitro (DIV1)). The neuronal differentiation triggered by exposure to retinoic acid (RA) was characterized in the control culture by mRNA expression analysis of neuronal specific markers such as MAP2, NF-200, Tubulin βIII, MAPT-tau, synaptophysin as well as excitatory (NMDA, AMPA) and inhibitory (GABA) receptors. The results obtained from the miRNA expression analysis have identified the presence of a miRNA signature which is specific for neural differentiation in the control culture and another for the response to MeHgCl-induced toxicity. In differentiated neuronal control cultures, we observed the downregulation of the stemness phenotype-linked miR-302 cluster and the overexpression of several miRNAs specific for neuronal differentiation (e.g. let-7, miR-125b and miR-132). In the cultures exposed to MeHgCl (400 nM), we observed an overexpression of a signature composed of five miRNAs (miR-302b, miR-367, miR-372, miR-196b and miR-141) that are known to be involved in the regulation of developmental processes and cellular stress response mechanisms. Using gene ontology term and pathway enrichment analysis of the validated targets of the miRNAs deregulated by the toxic treatment, the possible effect of MeHgCl exposure on signalling pathways involved in axon guidance and learning and memory processes was revealed. The obtained data suggest that miRNA profiling could provide simplified functional evaluation of the toxicity pathways involved in developmental neurotoxicity in comparison with the transcriptomics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AATK:

Apoptosis-associated tyrosine kinase

AB assay:

Alamar blue assay

CNS:

Central nervous system

DAVID:

Database for Annotation Visualization and Integrated Discovery

DIV:

Days in vitro

DNT:

Developmental neurotoxicity

EMT:

Epithelial–mesenchymal transition

ES:

Cell embryonic stem cell

GO term:

Gene ontology term

hESC:

Human embryonic stem cell

MeHgCl:

Methyl mercury chloride

miRNA:

MicroRNA

NT2 cell line:

NTERA-2 cell line

RA:

Retinoic acid

UTRs:

Untranslated regions

References

  • Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, et al. The let-7 microRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell. 2005;9:403–14.

    Article  PubMed  CAS  Google Scholar 

  • Amiel J, de Pontual L, Henrion-Caude A. miRNA, development and disease. Adv Genet. 2012;80:1–36.

    Article  PubMed  CAS  Google Scholar 

  • Barco A, Alarcon JM, Kandel ER. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell. 2002;108(5):689–703.

    Article  PubMed  CAS  Google Scholar 

  • Barroso-del Jesus A, Romero-López C, Lucena-Aguilar G, Melen GJ, Sanchez L, Ligero G, et al. Embryonic stem cell-specific miR302-367 cluster: human gene structure and functional characterization of its core promoter. Mol Cell Biol. 2008;28(21):6609–19.

    Article  CAS  Google Scholar 

  • Braceen CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008;68(19):7846–54.

    Article  Google Scholar 

  • Burbacher TM, Rodier PM, Weiss B. Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol. Teratol. 1990;12:191–202.

    Google Scholar 

  • Buzanska L, Sypecka J, Nerini-Molteni S, Compagnoni A, Hogberg HT, del Torchio R, et al. A human stem cell-based model for identifying adverse effects of organic and inorganic chemicals on the developing nervous system. Stem Cells. 2009;27(10):2591–601.

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Pfaff SL, Gage FH. A functional study of miR-124 in the developing neural tube. Genes Dev. 2007;21(5):531–6.

    Article  PubMed  CAS  Google Scholar 

  • Ceccatelli S, Daré E, Moors M. Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact. 2010;188(2):301–8.

    Article  PubMed  CAS  Google Scholar 

  • Chotard C, Leung W, Salecker I. Glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila. Neuron. 2005;48(2):237–51.

    Article  PubMed  CAS  Google Scholar 

  • Christensen M, Schratt GM. microRNA involvement in developmental and functional aspects of the nervous system and in neurological diseases. Neurosci Lett. 2009;466(2):55–62.

    Article  PubMed  CAS  Google Scholar 

  • Claudio L, Kwa WC, Russell AL, Wallinga D. Testing methods for developmental neurotoxicity of environmental chemicals. Toxicol Appl Pharmacol. 2000;164:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Cochella L, Hobert O. Embryonic priming of a miRNA locus predetermines postmitotic neuronal left/right asymmetry in C. elegans. Cell. 2012;151(6):1229–42.

    Article  PubMed  CAS  Google Scholar 

  • De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development. 2008;135(23):3911–21.

    Article  PubMed  Google Scholar 

  • Dolbec J, Mergler D, Sousa Passos CJ, Sousa dM, Lebel J. Methylmercury exposure affects motor performance of a riverine population of the Tapajos River, Brazilian Amazon. Int Arch Occup Environ Health. 2000;73:195–203.

    Article  PubMed  CAS  Google Scholar 

  • Dougan ST, Warga RM, Kane DA, Schier AF, Talbot WS. The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development. 2003;130(9):1837–51.

    Article  PubMed  CAS  Google Scholar 

  • Dvinge H, Bertone P. HTqPCR: high-throughput analysis and visualization of quantitative real-time PCR data in R. Bioinformatics. 2009;25:3325–6.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson P. Developmental neurotoxicity of environmental agents in the neonate. Neurotoxicology. 1997;18:719–26.

    PubMed  CAS  Google Scholar 

  • Feng W, Feng Y. MicroRNAs in neural cell development and brain diseases. Sci China Life Sci. 2011;54(12):1103–12.

    Article  PubMed  CAS  Google Scholar 

  • Fishwick KJ, Li RA, Halley P, Deng P, Storey KG. Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube. Dev Biol. 2010;338(2):215–25.

    Article  PubMed  CAS  Google Scholar 

  • Fox DA, Grandjean P, de Groot D, Paule MG. Developmental origins of adult diseases and neurotoxicity: epidemiological and experimental studies. Neurotoxicology. 2012;33(4):810–6.

    Article  PubMed  Google Scholar 

  • Friedman Y, Naamati G, Linial M. MiRror: a combinatorial analysis web tool for ensembles of microRNAs and their targets. Bioinformatics. 2010;26(15):1920–1.

    Article  PubMed  CAS  Google Scholar 

  • Gao FB. Context-dependent functions of specific microRNAs in neuronal development. Neural Dev. 2010;5:25. doi:10.1186/1749-8104-5-25.

    Article  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.

    Article  PubMed  Google Scholar 

  • Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368(9553):2167–78.

    Article  PubMed  CAS  Google Scholar 

  • Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, et al. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol. 1997;19:417–28.

    Article  PubMed  CAS  Google Scholar 

  • Harrill JA, Freudenrich TM, Robinette BL, Mundy WR. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth. Toxicol Appl Pharmacol. 2011;256(3):268–80.

    Article  PubMed  CAS  Google Scholar 

  • He X, Yan YL, Eberhart JK, Herpin A, Wagner TU, Schartl M, et al. miR-196 regulates axial patterning and pectoral appendage initiation. Dev Biol. 2011;357(2):463–77.

    Article  PubMed  CAS  Google Scholar 

  • Hogberg HT, Kinsner-Ovaskainen A, Hartung T, Coecke S, Bal-Price AK. Gene expression as a sensitive endpoint to evaluate cell differentiation and maturation of the developing central nervous system in primary cultures of rat cerebellar granule cells (CGCs) exposed to pesticides. Toxicol Appl Pharmacol. 2009;235:268–86.

    Article  PubMed  CAS  Google Scholar 

  • Hogberg HT, Kinsner-Ovaskainen A, Coecke S, Hartung T, Bal-Price AK. mRNA expression is a relevant tool to identify developmental neurotoxicants using an in vitro approach. Toxicol Sci. 2010;113:95–115.

    Article  PubMed  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010;38(Database issue):D355–60.

    Article  PubMed  CAS  Google Scholar 

  • Kaur P, Armugam A, Jeyaseelan K. MicroRNAs in Neurotoxicity. J Toxicol. 2012; 870150

  • Kawahara H, Imai T, Okano H. MicroRNAs in neural stem cells and neurogenesis. Front Neurosci. 2012;6:30.

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, et al. A microRNA feedback circuit in midbrain dopamine neurons. Science. 2007;317(5842):1220–4.

    Article  PubMed  CAS  Google Scholar 

  • Konopka W, Schütz G, Kaczmarek L. The microRNA contribution to learning and memory. Neuroscientist. 2011;17(5):468–74.

    Article  PubMed  CAS  Google Scholar 

  • Kosik KS. Neuroscience gears up for duel on the issue of brain versus deity. Nature. 2006;439(7073):138.

    Article  PubMed  CAS  Google Scholar 

  • Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.

    Article  PubMed  CAS  Google Scholar 

  • Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA. 2003;9(10):1274–81.

    Article  PubMed  CAS  Google Scholar 

  • Krug AK, Balmer NV, Matt F, Schönenberger F, Merhof D, Leist M. Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants. Arch Toxicol. 2013; May 14.

  • Laurenza I, Pallocca G, Mennecozzi M, Scelfo B, Pamies D, Bal-Price A. A human pluripotent carcinoma stem cell-based model for in vitro developmental neurotoxicity testing: effects of methylmercury, lead and aluminum evaluated by gene expression studies. Int J Dev Neurosci. 2013;S0736–5748(13):00038–5.

    Google Scholar 

  • Lebel J, Mergler D, Branches F, Lucotte M, Amorim M, Larribe F, et al. Neurotoxic effects of low-level methylmercury contamination in the Amazonian Basin. Environ Res. 1998;79:20–32.

    Article  PubMed  CAS  Google Scholar 

  • Lei W, Hirose T, Zhang LX, Adachi H, Spinella MJ, Dmitrovsky E, et al. Cloning of the human orphan receptor germ cell nuclear factor/retinoid receptor-related testis-associated receptor and its differential regulation during embryonal carcinoma cell differentiation. J Mol Endocrinol. 1997;18(2):167–76.

    Article  PubMed  CAS  Google Scholar 

  • Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A, Bally-Cuif L. MicroRNA-9 directs late organizer activity of the midbrain–hindbrain boundary. Nat Neurosci. 2008;11(6):641–8.

    Article  PubMed  CAS  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73.

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  • Magenta A, Cencioni C, Fasanaro P, Zaccagnini G, Greco S, Sarra-Ferraris G, et al. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. 2011;18(10):1628–39.

    Article  PubMed  CAS  Google Scholar 

  • Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell. 2007;27(3):435–48.

    Article  PubMed  CAS  Google Scholar 

  • Maller Schulman BR, Liang X, Stahlhut C, DelConte C, Stefani G, Slack FJ. The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure. Cell Cycle. 2008;7(24):3935–42.

    Article  PubMed  Google Scholar 

  • Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, et al. miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med. 2011;17(12):1627–35.

    Article  PubMed  CAS  Google Scholar 

  • Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 2004;5(9):R68.

    Article  PubMed  Google Scholar 

  • Nerini-Molteni S, Mennecozzi M, Fabbri M, Sacco MG, Vojnits K, Compagnoni A, et al. MicroRNA profiling as a tool for pathway analysis in a human in vitro model for neural development. Curr Med Chem. 2012;19(36):6214–23.

    Article  PubMed  CAS  Google Scholar 

  • NRC. Toxicity testing in the 21st century: a vision and a strategy. Washington, D.C.: The National Academies Press; 2007.

    Google Scholar 

  • O'Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267:5421–6.

    Article  PubMed  Google Scholar 

  • OECD (2007). Test Guideline 426. OECD Guideline for Testing of Chemicals. Developmental Neurotoxicity Study. Available: http://www.oecd.org/document/55/0,3343,en_2649_34377_2349687_1_1_1_1,00.html

  • Pan G, Thomson JA. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 2007;17(1):42–9.

    Article  PubMed  CAS  Google Scholar 

  • Parsons XH. MicroRNA profiling reveals distinct mechanisms governing cardiac and neural lineage-specification of pluripotent human embryonic stem cells. J Stem Cell Res Ther. 2012;13:2(3).

    Google Scholar 

  • Pasquinelli AE, Ruvkun G. Control of developmental timing by microRNAs and their targets. Annu Rev Cell Dev Biol. 2002;18:495–513.

    Article  PubMed  CAS  Google Scholar 

  • Pleasure SJ, Page C, Lee VM. Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J Neurosci. 1992;12:1802–15.

    PubMed  CAS  Google Scholar 

  • Radio NM, Mundy WR. Developmental neurotoxicity testing in vitro: models for assessing chemical effects on neurite outgrowth. Neurotoxicology. 2008;29(3):361–76.

    Article  PubMed  CAS  Google Scholar 

  • Rand MD. Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol. 2010;32(1):74–83.

    Article  PubMed  CAS  Google Scholar 

  • Rodda S, Sharma S, Scherer M, Chapman G, Rathjen P. CRTR-1, a developmentally regulated transcriptional repressor related to the CP2 family of transcription factors. J Biol Chem. 2001;276(5):3324–32.

    Article  PubMed  CAS  Google Scholar 

  • Rodier PM. Developing brain as a target of toxicity. Environ Health Perspect. 1995;103:73–6.

    PubMed  Google Scholar 

  • Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol. 2008;18(10):505–16.

    Article  PubMed  CAS  Google Scholar 

  • Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol. 2008;10(8):987–93.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer A, O'Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med. 2007;204(7):1553–8.

    Article  PubMed  CAS  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, et al. A brain-specific microRNA regulates dendritic spine development. Nature. 2006;439(7074):283–9.

    Article  PubMed  CAS  Google Scholar 

  • Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004;5(3):R13.

    Article  PubMed  Google Scholar 

  • Smyth GK. Limma: linear models for microarray data. In: Bioinformatics and computational biology solutions using R and bioconductor. Springer: New York; 2005. p. 397–420.

    Chapter  Google Scholar 

  • Stallings RL, Foley NH, Bray IM, Das S, Buckley PG. MicroRNA and DNA methylation alterations mediating retinoic acid induced neuroblastoma cell differentiation. Semin Cancer Biol. 2011;21(4):283–90.

    Article  PubMed  CAS  Google Scholar 

  • Stiegler NV, Krug AK, Matt F, Leist M. Assessment of chemical-induced impairment of human neurite outgrowth by multiparametric live cell imaging in high-density cultures. Toxicol Sci. 2011;121(1):73–87.

    Article  PubMed  CAS  Google Scholar 

  • Stummann TC, Hareng L, Bremer S. Hazard assessment of methylmercury toxicity to neuronal induction in embryogenesis using human embryonic stem cells. Toxicology. 2009;257(3):117–26.

    Article  PubMed  CAS  Google Scholar 

  • Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004;270(2):488–98.

    Article  PubMed  CAS  Google Scholar 

  • Sutton MA, Schuman EM. Dendritic protein synthesis, synaptic plasticity, and memory. Cell. 2006;127(1):49–58.

    Article  PubMed  CAS  Google Scholar 

  • Tilson HA. Neurotoxicology risk assessment guidelines: developmental neurotoxicology. Neurotoxicology. 2000;21:189–94.

    PubMed  CAS  Google Scholar 

  • U.S. EPA (U.S. Environmental Protection Agency), 1998. U.S. Environmental Protection Agency Health Effects Test Guidelines. OPPTS 870.6300. Developmental Neurotoxicity Study. U.S. EPA 712-C-98-239. Available:http://www.epa.gov/opptsfrs/publications/OPPTS_Harmonized/870_Health_Effects_Test_Guidelines/Series/870-6300.pdf

  • Visvanathan J, Lee S, Lee B, Lee JW, Lee SK. The microRNA miR-124 antagonizes the antineural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 2007;21(7):744–9.

    Article  PubMed  CAS  Google Scholar 

  • Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A. 2005;102(45):16426–31.

    Article  PubMed  CAS  Google Scholar 

  • Wanet A, Tacheny A, Arnould T, Renard P. miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res. 2012;40(11):4742–53.

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Kwon EJ, Tsai LH. MicroRNAs in learning, memory, and neurological diseases. Learn Mem. 2012;19(9):359–68.

    Article  PubMed  CAS  Google Scholar 

  • Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A. 2008;105(26):9093–8.

    Article  PubMed  CAS  Google Scholar 

  • Wulczyn FG, Smirnova L, Rybak A, Brandt C, Kwidzinski E, Ninnemann O, et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J. 2007;21(2):415–26.

    Article  PubMed  CAS  Google Scholar 

  • Yokoo EM, Valente JG, Grattan L, Schmidt SL, Platt I, Silbergeld EK. Low level methylmercury exposure affects neuropsychological function in adults. Environ Health. 2003;2(1):8.

    Article  PubMed  Google Scholar 

  • Yu JY, Chung KH, Deo M, Thompson RC, Turner DL. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res. 2008;314(14):2618–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M. Fabbri is a student of the PhD program in Biotechnology, School of Biological and Medical Sciences, University of Insubria (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Bal-Price.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pallocca, G., Fabbri, M., Sacco, M.G. et al. miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing. Cell Biol Toxicol 29, 239–257 (2013). https://doi.org/10.1007/s10565-013-9250-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-013-9250-5

Keywords

Navigation