Skip to main content
Log in

Diverse action of acrylamide on cytochrome P450 and glutathione S-transferase isozyme activities, mRNA levels and protein levels in human hepatocarcinoma cells

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Humans are exposed to acrylamide in their diet and cigarette smoke. Acrylamide is metabolized into glycidamide by CYP2E1. However, very few studies regarding the effects of acrylamide on cytochrome P450 and Glutathione S-Transferase (GST) isozymes have been pursued. The aim of this study is to elucidate the effects of acrylamide on cytochrome P450 and GST isozymes in HepG2 cell line. Treatment with 1.25 and 2.5 mM acrylamide caused 9.5- and 3.7-fold increases and 4.0- and 3.3-fold increases in CYP1A-associated ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) activities, respectively. These increases were consistent with increases in mRNA and protein levels of these isozymes. Similarly, CYP2E1-associated aniline 4-hydroxylase (ANH) activity, protein levels, and mRNA levels increased 2.1- and 2.6-fold, 2.4- and 3.2-fold, and 1.4- and 1.9-fold following 1.25 and 2.5 mM acrylamide treatments, respectively. In addition, GST-mu activity was increased 2.4- and 5.1-fold by acrylamide. Moreover, GST-mu mRNA and protein levels increased twofold as a result of acrylamide treatment. In contrast, GST-pi protein and mRNA levels decreased significantly. In conclusion, human cell exposure to acrylamide causes an increase in the levels of carcinogenicity and toxicity and a disturbance in drug metabolism, possibly due to complex effects on P450 and GST isozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adler ID, Baumgartner A, Gonda H, Friedman MA, Skerhut M. 1 Aminobenzotriazole inhibits acrylamide-induced dominant lethal effects in spermatids of male mice. Mutagenesis. 2000;15:133–6.

    Article  PubMed  CAS  Google Scholar 

  • Arinç E. The role of polymorphic cytochrome P450 enzymes in drug design, development and drug interactions with special emphasis on phenotyping. J Mol Cat B: Enzymatic. 2010;64:120–2.

    Article  Google Scholar 

  • Arinç E, Arslan S, Bozcaarmutlu A, Adalı O. Effects of diabetes on rabbit kidney and lung CYP2E1 and CYP2B4 expression and drug metabolism and potentiation of carcinogenic activity of N-nitrosodimethylamine in kidney and lung. Food Chem Toxicol. 2007;45:107–18.

    Article  PubMed  Google Scholar 

  • Arinç E, Arslan S, Adali O. Differential effects of diabetes on CYP2E1 and CYP2B4 proteins and associated drug metabolizing enzyme activities in rabbit liver. Arch Toxicol. 2005;79:427–33.

    Article  PubMed  Google Scholar 

  • Arinç E, Adali O, Ozkan-Gencler AM. Induction of N-nitrosodimethylamine metabolism in liver and lung by in vivo pyridine treatment of rabbits. Arch Toxicol. 2000;74:329–34.

    Article  PubMed  Google Scholar 

  • Arinç E, Adali O. Solubilization and partial purification of two forms of cytochrome P-450 from trout liver microsomes. Comp Biochem Phys. 1983;76:653–62.

    Google Scholar 

  • Arinç E, Philpot RM. Preparation and properties of partialiy purified pulmonary cytochrome P-450 from rabbits. J Biol Chem. 1976;251:3213–20.

    PubMed  Google Scholar 

  • Arribas-Lorenzo G, Morales FJ. Dietary exposure to acrylamide from potato crisps to the Spanish population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2009;26:289–97.

    PubMed  CAS  Google Scholar 

  • Arslan S, Ozgun O, Celik G, Semiz A, Dusen O, Mammadov R, Sen A. Effects of Cyclamen trochopteranthum on hepatic drug metabolizing enzymes. Arch Biol Sci Belgrade. 2011;63:545–55.

    Article  Google Scholar 

  • Barber DS, Hunt JR, Ehrich MF, Lehning EJ, LoPachin RM. Metabolism, toxicokinetics and hemoglobin adduct formation in rats following subacute and subchronic acrylamide dosing. Neurotoxicology. 2001;22:341–53.

    Article  PubMed  CAS  Google Scholar 

  • Bergmark E. Hemoglobin adducts of acrylamide and acrylonitrile in laboratory workers, smokers and nonsmokers. Chem Res Toxicol. 1997;10:78–84.

    Article  PubMed  CAS  Google Scholar 

  • Besaratinia A, Pfeifer GP. Genotoxicity of acrylamide and glycidamide. J Natl Canc Inst. 2004;96:1023–9.

    Article  CAS  Google Scholar 

  • Besaratinia A, Pfeifer GP. A review of mechanisms of acrylamide carcinogenicity. Carcinogenesis. 2007;28:519–28.

    Article  PubMed  CAS  Google Scholar 

  • Bull RJ, Robinson M, Laurie RD, Stoner GD, Greisiger E, Meier JR, Stober J. Carcinogenic effects of acrylamide in Sencar and A/J mice. Canc Res. 1984;44:107–11.

    CAS  Google Scholar 

  • Burke MD, Mayer RT. Ethoxyresorufin. direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylchlontrane. Drug Metab Dispos. 1974;2:583–8.

    PubMed  CAS  Google Scholar 

  • Cochin J, Axelrod J. Bichemical and pharmacological changes in the rat following chronic administration of morphine, nalorphine, and normorphine. J Pharm Exp Ther. 1959;125:105–10.

    CAS  Google Scholar 

  • Doroshyenko O, Fuhr U, Kunz D, Frank D, Kinzig M, Jetter A, Reith Y, Lazar A, Taubert D, Kirchheiner J, Baum M, Eisenbrand G, Berger FI, Bertow D, Berkesel A, Sörgel F, Schömig E, Tomalik-Scharte D. In vivo role of cytochrome P450 2E1 and glutathiones-transferase activity for acrylamide toxicokinetics in humans. Cancer Epidemiol Biomarkers Prev. 2009;18:433–43.

    Article  PubMed  CAS  Google Scholar 

  • Exon JH. A review of the toxicology of acrylamide. J Toxicol Enviro Health. 2006;9:397–412.

    CAS  Google Scholar 

  • Friedman M. Chemistry, biochemistry and safety of acrylamide. A review J Agr Food Chem. 2003;51:4504–26.

    Article  CAS  Google Scholar 

  • Friedman MA, Duak LH, Stedha MAA. Lifetime oncogenicity study in rats with acrylamide. Fundam Appl Toxicol. 1995;27:95–105.

    Article  PubMed  CAS  Google Scholar 

  • Ghanayem BI, McDaniel LP, Churchwell MI, Twaddle CN, Snyder R, Fennel TR, Doerge DR. Role of CYP2E1 in the epoxidation of acrylamide to glycidamide and formation of DNA and hemoglobin adducts. Toxicol Sci. 2005;88:311–8.

    Article  PubMed  CAS  Google Scholar 

  • Ghanayem BI, Wang H, Sumner SCJ. Using cytochrome P450 gene knock-out mice to study chemical metabolism, toxicity, and carcinogenicity. Toxicol Pathol. 2000;28:839–50.

    Article  PubMed  CAS  Google Scholar 

  • Guengerich FP, Kim DH, Iwasaki M. Role of human cytochrome P450 IIEI in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol. 1991;4:168–79.

    Article  PubMed  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.

    PubMed  CAS  Google Scholar 

  • Hagmar L, Tornquvist M, Nordander C, Rosen I, Bruze M, Kautiainen A. Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkers of internal dose. Scand J Work Environ Health. 2001;27:219–26.

    Article  PubMed  CAS  Google Scholar 

  • Hogervorst JG, Schouten LJ, Konings EJ, Goldbohm RA, van den Brandt PA. A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidemiol Biomarkers Prev. 2007;16:2304–13.

    Article  PubMed  CAS  Google Scholar 

  • Hogervorst JG, Baars BJ, Schouten LJ, Konings EJ, Goldbohm RA, van den Brandt PA. The carcinogenicity of dietary acrylamide intake: a comparative discussion of epidemiological and experimental animal research. Crit Rev Toxicol. 2010;40:485–512.

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Ito A, Sato R. Evidence for biochemically different types of vesicles in the hepatic microsomal fraction. J Biochem. 1966;60:417–28.

    PubMed  CAS  Google Scholar 

  • International Agency for Research on cancer (IARC). Acrylamide. IARC Monogr Eval Carcinog Risks Hum. 1994;60:389–433.

  • Johnson KA, Gorzinski SJ, Bodner KM, Campbell RA, Wolf CH, Friedman MA, Mast RW. Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats. Toxicol Appl Pharmacol. 1986;85:154–68.

    Article  PubMed  CAS  Google Scholar 

  • Koide A, Fuwa K, Furukawa F, Hirose M, Nishikawa A, Mori Y. Effect of cigarette smoke on the mutagenic activation of environmental carcinogens by rodent liver. Mutat Res. 1999;428:165–76.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan K, Brodeur J. Toxicological consequences of combined exposure to environmental pollutants. Arch Compl Environ Stud. 1991;3:1–106.

    Google Scholar 

  • Kurebayashi H, Ohno,Y. Metabolism of acrylamide to glycidamide and their cytotoxicity in isolated rat hepatocytes: protective effects of GSH precursors. Arch Toxicol. 2006;80:820–828.

    Google Scholar 

  • Laemmli UK. Clevage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–4.

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Hedstrom OR, Fisher K, Wang-Buhler JL, Şen A, Cok I, Buhler DR. Immunohistochemical localization and differential expression of cytochrome P450 3A27 in the gastrointestinal tract of rainbow trout. Tox App Pharmacol. 2001;177:94–102.

    Article  CAS  Google Scholar 

  • Lieber CS. Cytochrome P-4502E1: its physiological and pathological role. Biol Rev. 1997;77:517–44.

    CAS  Google Scholar 

  • Lopachin RM. The role of fast axonal transport in acrylamide pathophysiology: mechanism or epiphenomenon? Neurotoxicology. 2002;23:253–7.

    Article  PubMed  CAS  Google Scholar 

  • Lopachin RM. The changing view of acrylamide neurotoxicity. NeuroToxicology. 2004;25:617–30.

    Article  PubMed  CAS  Google Scholar 

  • Lorr NA, Miller KW, Chung HR, Yang CS. Potentiation of the hepatotoxicity of N-nitrosodimethylamine by fasting, diabetes, acetone, and isopropanol. Toxicol Appl Pharmacol. 1984;73:423–5.

    Article  PubMed  CAS  Google Scholar 

  • Manjanatha MG, Aidoo A, Shelton SD, Bishop ME, McDaniel LP, Lyn-Cook LE, Doerge DR. Genotoxicity of acrylamide and its metabolite glycidamide administered in drinking water to male and female big blue mice. Environ Mol Mut. 2006;47:6–17.

    Article  CAS  Google Scholar 

  • Marsh GM, Lucas LJ, Youk AO, Schall LC. Mortality patterns among workers exposed to acrylamide. Occup Environ Med. 1999;56:181–90.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama M, Matsunaga T, Harada E, Ohmori S. Comparison of basal gene expression and induction of CYP3As in HepG2 and human fetal liver cells. Biol Pharm Bull. 2007;30:2091–7.

    Article  PubMed  CAS  Google Scholar 

  • Mei N, Guo L, Tseng J, Dial SL, Liao W, Manjanatha MG. Gene expression changes associated with xenobiotic metabolism pathways in mice exposed to acrylamide. Environ Mol Mut. 2008;49:741–5.

    Article  CAS  Google Scholar 

  • Mottram DS, Wedzicha BL, Dodson AT. Acrylamide is formed in the Maillard reaction. Nature. 2002;419:448–9.

    Article  PubMed  CAS  Google Scholar 

  • Mucci LA, Dickman PW, Steinek G, Adami HO, Augustsson K. Dietary acrylamide and cancer of the large bowel, kidney, and bladder. Absence of an association in a population based study in Sweden. Br J Canc. 2003;88:84–9.

    Article  CAS  Google Scholar 

  • Nash T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953;55:416–21.

    PubMed  CAS  Google Scholar 

  • Nishikawa A, Furukawa F, Miyauchi M, Son HY, Okazaki K, Koide A, Mori Y, Hirose M. Enhancement by cigarette smoke exposure of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline-induced rat hepatocarcinogenesis in close association with elevation of hepatic CYP1A2. Jpn J Cancer Res. 2002;93:24–31.

    Article  PubMed  CAS  Google Scholar 

  • Paulsson B, Warholm M, Rannug A, Törnqvist M. In vitro studies of the influence of certain enzymes on the detoxification of acrylamide and glycidamide in blood. Adv Exp Med Biol. 2005;561:127–33.

    Article  PubMed  CAS  Google Scholar 

  • Pelucchi C, Franceschi S, Levi F, Trichopoulos D, Bosetti C, Negri E, La Vecchia C. Fried potatoes and human cancer. Int J Canc. 2003;105:558–60.

    Article  CAS  Google Scholar 

  • Rice JM. The carcinogenicity of acrylamide. Mut Res. 2005;580:3–20.

    CAS  Google Scholar 

  • Rosen J, Hellenas K. Analysis of acrylamide in cooked foods by liquid chromatography tandem mass spectrometry. Analyst. 2002;127:880–2.

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Okamoto SI, Cui J, Watanabe Y, Furuta K, Suzuki M, Tohyama K, Lipton SA. Proc Natl Acad Sci. 2006;103:768–73. ilave et.

    Article  PubMed  CAS  Google Scholar 

  • Sen A, Arinç E. Preparation of highly purified cytochrome P4501A1 from leaping mullet (Liza saliens) liver microsomes and its biocatalytic, molecular and immunochemical properties. Comp Biochem Physiol. 1998;121C:249–65.

    CAS  Google Scholar 

  • Sen A, Arinç E. Further immunochemical and biocatalytic characterization of CYP1A1 from feral leaping mullet liver (Liza saliens) microsomes. Comp Biochem Physiol. 2000;126C:235–44.

    CAS  Google Scholar 

  • Smith CJ, Perfetti TA, Rumple MA, Rodgman A, Doolittle DJ. IARC group 2A carcinogens reported in cigarette mainstream smoke. Food Chem Toxicol. 2000;38:371–83.

    Article  PubMed  CAS  Google Scholar 

  • Song BJ. Gene structure and multiple regulations of the ethanol-inducible cytochrome P4502E1 (CYP2E1) subfamily. In Watson RR, eds. Drug and Alcohol Abuse Reviews. Totowa, New Jersey; Humana Press. 1995;6:177–192.

  • Sumner SCJ, Fennel TR, Moore TA, Chanas B, Gonzales F, Ghanayem BI. Role of cytochrome P4502E1 in the metabolism of acrylamide and acrylonitrile in mice. Chem Res Toxicol. 1999;12:1116–20.

    Article  Google Scholar 

  • Sumner SCJ, Selvaraj L, Nauhaus SK, Fennell TR. Urinary metabolites from F344 rats and B6C3F1 mice coadministered acrylamide and acrylonitrile for 1 or 5 days. Chem Res Toxicol. 1997;10:1152–60.

    Article  PubMed  CAS  Google Scholar 

  • Svensson K, Abramsson L, Becker W, Glynn A, Hellena KE, Lind Y, Rose’n J. Dietary intake of acrylamide in Sweden. Food Chem Toxicol. 2003;41:1581–6.

    Article  PubMed  CAS  Google Scholar 

  • Szczerbina T, Banach Z, Tylko G, Pyza E. Toxic effects of acrylamide on survival, development and haemocytes of Musca domestica. Food Chem Toxicol. 2008;46:2316–9.

    Article  PubMed  CAS  Google Scholar 

  • Tareke E, Rydberg P, Karlsson P, Eriksson S, Tornqvist M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem. 2002;50:4998–5006.

    Article  PubMed  CAS  Google Scholar 

  • Ulusoy G, Arınç E, Adalı O. Genotype and allele frequencies of polymorphic CYP2E1 in the Turkish population. Arch Toxicol. 2007a;81:711–8.

    Article  PubMed  CAS  Google Scholar 

  • Ulusoy G, Adali O, Tumer TB, Sahin G, Gozdasoglu S, Arinç E. Significance of genetic polymorphisms at multiple loci of CYP2E1 in the risk of development of childhood acute lymphoblastic leukemia. Oncology. 2007b;72:125–31.

    Article  PubMed  CAS  Google Scholar 

  • Walter M, Westerink A, Willem GE, Schoonen J. Phase II enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol In Vitro. 2007;21:1592–602.

    Article  Google Scholar 

  • Wang T, Shankar M, Ronis MJ, Mehendale HM. Potentiation of thioacetamide liver injury in diabetic rats is due to induced CYP2E1. J Phar Exp Ther. 2000;294:473–9.

    CAS  Google Scholar 

  • Watanabe M, Tateishi T, Asoh M, Nakura H, Tanaka M, Kumai T, Kobayashi S. Role of CYP3A in haloperidol N-dealkylation and pharmacokinetics in rats. Fundam Clin Pharmacol. 1999;13:337–42.

    Article  PubMed  CAS  Google Scholar 

  • Waxman DJ. P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys. 1999;369:11–23.

    Article  PubMed  CAS  Google Scholar 

  • Wilkening S, Stahl F, Bader A. Comparison of primary human hepatocytes and hepatoma cell line HepG2 with regard to their biotransfomation properties. DMD. 2003;31:1035–42.

    CAS  Google Scholar 

  • Yang CS, Yoo JS, Ishizaki H, Hang J. Cytochrome P4502E1: Roles in nitrosamine metabolism and mechanism of regulation. Drug Metabol Rev. 1990;22:147–159.

    Google Scholar 

  • Yang CS, Hong JY. Molecular aspects of cytochrome P4502E1 and its roles in chemical toxicology. In: Arinç E, Schenkman JB, Hodson E, eds. Molecular Aspects of Oxidative drug Metabolizing Enzymes. NATO ASI Series: Berlin: Springer Verlag. 1995;181–192.

  • Yousef MI, El-Demerdash FM. Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicology. 2006;219:134–41.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from The Scientific and Technological Research Council of Turkey (109 T062). We would also like to thank the Pamukkale University Research Fund (PAU-BAP 2009BSP009).

Conflict of interest

The authors have declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevki Arslan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, A., Ozgun, O., Arinç, E. et al. Diverse action of acrylamide on cytochrome P450 and glutathione S-transferase isozyme activities, mRNA levels and protein levels in human hepatocarcinoma cells. Cell Biol Toxicol 28, 175–186 (2012). https://doi.org/10.1007/s10565-012-9214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-012-9214-1

Keywords

Navigation