Skip to main content

Advertisement

Log in

Increased oxidative stress and cytotoxicity by hydrogen sulfide in HepG2 cells overexpressing cytochrome P450 2E1

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The main objectives of this work were to evaluate the effects of hydrogen sulfide on oxidative stress and cytotoxicity parameters in HepG2 cells and to assess the extent to which cytochrome P450 2E1 (CYP2E1) activity modulates the effects of hydrogen sulfide on oxidative stress and cytotoxicity. Sodium hydrosulfide (NaHS) caused time- and concentration-dependent cytotoxicity in both non-P450-expressing HepG2 cells (C34 cells) and CYP2E1-overexpressing HepG2 cells (E47 cells); however, NaHS-dependent cytotoxicity was higher in E47 than C34 cells. Cytotoxicity by NaHS in C34 and E47 cells was mainly necrotic in nature and associated with an early decrease in mitochondrial membrane potential. NaHS caused increased oxidation of lipophilic (C11-BODIPY581/591) and hydrophilic (DCFH-DA) probes only in E47 cells, at a time point prior to overt cytotoxicity. Trolox, an amphipathic antioxidant, partially inhibited both the cytotoxicity and the increased oxidative stress detected in E47 cells exposed to NaHS. Cell-permeable iron chelators and CYP2E1 inhibitors significantly inhibited the oxidation of C11-BODIPY581/591 in E47 cells in the presence of NaHS. NaHS produced lipid peroxidation and cytotoxicity in E47 cells supplemented with a representative polyunsaturated fatty acid (docosahexaenoic acid) but not in C34 cells; these effects were inhibited by α-tocopherol, a lipophilic antioxidant. These data suggest that CYP2E1 enhances H2S-dependent cytotoxicity in HepG2 cells through the generation of iron-dependent oxidative stress and lipid peroxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

C11-BODIPY581/591 :

4,4-Difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid

C34:

HepG2 cell line derived after transfection with pCI-neo vector

CYP2E1:

Cytochrome P450 2E1

DCFH-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

DFO:

Deferoxamine mesylate

DIP:

α,α′-Dipyridyl

E47:

HepG2 cell line derived after transfection with pCI-neo vector containing the human CYP2E1 cDNA

MEM:

Minimal essential medium

MEMexps :

MEM supplemented 100 units/mL of penicillin, 100 μg/mL of streptomycin, and 10 mM HEPES at pH 7.4

PITC:

Phenylisothiocyanate

PI:

Propidium iodide

Rhodamine 123:

R123

ROS:

Reactive oxygen species

TBARS:

Thiobarbituric acid reactive substances

Trolox:

6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

References

  • Aitken RJ, Wingate JK, De Iuliis GN, McLaughlin EA. Analysis of lipid peroxidation in human spermatozoa using BODIPY C11. Mol Hum Reprod. 2007;13(4):203–11.

    Article  PubMed  CAS  Google Scholar 

  • Attene-Ramos M, Wagner ED, Gaskins HR, Plewa MJ. Hydrogen sulfide induces direct radical-associated DNA damage. Mol Cancer Res. 2007;5(5):455–9.

    Article  PubMed  CAS  Google Scholar 

  • Attene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ Mol Mutagen. 2010;51(4):304–14.

    PubMed  CAS  Google Scholar 

  • Bhatia M, Wong FL, Fu D, Lau HY, Moochhala SM, Moore PK. Role of hydrogen sulfide in acute pancreatitis and associated lung injury. FASEB J. 2005;19(6):623–5.

    PubMed  CAS  Google Scholar 

  • Calenic B, Yaegaki K, Murata T, Imai T, Aoyama I, Sato T, et al. Oral malodorous compound triggers mitochondrial-dependent apoptosis and causes genomic DNA damage in human gingival epithelial cells. J Periodont Res. 2010;45(1):31–7.

    Article  PubMed  CAS  Google Scholar 

  • Caro AA, Cederbaum AI. Synergistic toxicity of iron and arachidonic acid in HepG2 cells overexpressing CYP2E1. Mol Pharmacol. 2001;60(4):742–52.

    PubMed  CAS  Google Scholar 

  • Caro AA, Cederbaum AI. Role of calcium and calcium-activated proteases in CYP2E1-dependent toxicity in HEPG2 cells. J Biol Chem. 2002a;277(1):104–13.

    Article  PubMed  CAS  Google Scholar 

  • Caro AA, Cederbaum AI. Ca2+-dependent and independent mitochondrial damage in HepG2 cells that overexpress CYP2E1. Arch Biochem Biophys. 2002b;408(2):162–70.

    Article  PubMed  CAS  Google Scholar 

  • Caro AA, Cederbaum AI. Role of phosphatidylinositol 3-kinase/AKT as a survival pathway against CYP2E1-dependent toxicity. J Pharmacol Exp Ther. 2006;318(1):360–72.

    Article  PubMed  CAS  Google Scholar 

  • Chang MC, Ho YS, Lee PH, Chan CP, Lee JJ, Hahn LJ, et al. Areca nut extract and arecoline induced the cell cycle arrest but not apoptosis of cultured oral KB epithelial cells: association of glutathione, reactive oxygen species and mitochondrial membrane potential. Carcinogenesis. 2001;22(9):1527–35.

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Cederbaum AI. Cytotoxicity and apoptosis produced by cytochrome P450 2E1 in HepG2 cells. Mol Pharmacol. 1998;53(4):638–48.

    PubMed  CAS  Google Scholar 

  • Chen W, Kajiya M, Giro G, Ouhara K, Mackler HE, Mawardi H, et al. Bacteria-derived hydrogen sulfide promotes IL-8 production from epithelial cells. Biochem Biophys Res Commun. 2010;391(1):645–50.

    Article  PubMed  CAS  Google Scholar 

  • Deplancke B, Gaskins HR. Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells. FASEB J. 2003;17(10):1310–2.

    PubMed  CAS  Google Scholar 

  • Distrutti E, Mencarelli A, Santucci L, Orlandi S, Donini A, Shah V, et al. The methionine connection: homocysteine and hydrogen sulfide exert opposite effects on hepatic microcirculation in rats. Hepatology. 2008;47(2):659–67.

    Article  PubMed  CAS  Google Scholar 

  • Drummen GPC, Van Liebergen LCM, Op Den Kam JAF, Post JA. C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med. 2002;33(4):473–90.

    Article  PubMed  CAS  Google Scholar 

  • Eghbal MA, Pennefather PS, O’Brien PJ. H2S cytotoxicity involves reactive oxygen species formation and mitochondrial depolarization. Toxicology. 2004;203(1–3):69–76.

    Article  PubMed  CAS  Google Scholar 

  • Furne J, Saeed A, Levitt MD. Whole tissue hydrogen sulfide cocentrations are orders of magnitude lower than presently accepted values. Am J Physiol Regul Integr Comp Physiol. 2008;295(5):R1479–85.

    Article  PubMed  CAS  Google Scholar 

  • Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun. 2004;318(3):756–63.

    Article  PubMed  CAS  Google Scholar 

  • Gong P, Cederbaum AI, Nieto N. Increased expression of cytochrome P450 2E1 induces heme oxygenase-1 through ERK MAPK pathway. J Biol Chem. 2003;278(32):29693–700.

    Article  PubMed  CAS  Google Scholar 

  • Hermes-Lima M, Nagy E, Ponka P, Schulman HM. The iron chelator isonicotinoyl hydrazone (PIH) protects plasmid pUC-18 DNA against .OH-mediated strand breaks. Free Radic Biol Med. 1998;25(8):875–90.

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Dai J, Fournier J, Ali AM, Zhang Q, Frenkel K. Ferrous ion autoxidation and its chelation in iron-loaded human liver HepG2 cells. Free Radic Biol Med. 2002;32(1):84–92.

    Article  PubMed  CAS  Google Scholar 

  • Hughes MN, Centelles MN, Moore KP. Making and working with hydrogen sulfide. The chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: A Review. Free Radic Biol Med. 2009;47(10):1346–53.

    Article  PubMed  CAS  Google Scholar 

  • Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal. 2009;11(2):205–14.

    Article  PubMed  CAS  Google Scholar 

  • Jeney V, Komodi E, Nagy E, Zarjou A, Vercellotti GM, Eaton JW, et al. Supression of hemin-mediated oxidation of low-density lipoprotein and subsequent endothelial reactions by hydrogen sulfide (H2S). Free Radic Biol Med. 2009;46(5):616–23.

    Article  PubMed  CAS  Google Scholar 

  • Jha S, Calvert JW, Duranski MR, Ramachandran A, Lefer DJ. Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. Am J Physiol Heart Circ Physiol. 2008;295(2):H801–6.

    Article  PubMed  CAS  Google Scholar 

  • Kabil O, Banerjee R. Redox biochemistry of hydrogen sulfide. J Biol Chem. 2010;285(29):21903–7.

    Article  PubMed  CAS  Google Scholar 

  • Kikugawa K, Yasuhara Y, Ando K, Koyama K, Hiramoto K, Suzuki M. Protective effect of supplementation of fish oil with high n-3 polyunsaturated fatty acids against oxidative stress-induced DNA damage of rat liver in vivo. J Agric Food Chem. 2003;51(20):6073–9.

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J. 2004;18(10):1165–7.

    PubMed  CAS  Google Scholar 

  • Koop DR. Oxidative and reductive metabolism by cytochrome P4502E1. FASEB J. 1992;6(2):724–30.

    PubMed  CAS  Google Scholar 

  • Lorenz H, Hailey DW, Wunder C, Lippincott-Schwartz J. The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nat Protoc. 2006;1(1):276–9.

    Article  PubMed  CAS  Google Scholar 

  • Lucas D, Menez JF, Berthou F. Chlorzoxazone: an in vitro and in vivo substrate probe for liver CYP2E1. Methods Enzymol. 1996;272:115–23.

    Article  PubMed  CAS  Google Scholar 

  • Mari M, Cederbaum AI. CYP2E1 overexpression in HepG2 cells induces glutathione synthesis by transcriptional activation of gamma-glutamylcysteine synthetase. J Biol Chem. 2000;275(20):15563–71.

    Article  PubMed  CAS  Google Scholar 

  • Morsy MA, Ibrahim SA, Abdelwahab SA, Zedan MZ, Elbitar HI. Curative effects of hydrogen sulfide against acetaminophen-induced hepatotoxicity in mice. Life Sci. 2010;87(23–26):692–8.

    Article  PubMed  CAS  Google Scholar 

  • Muellner MK, Schreier SM, Laggner H, Hermann M, Esterbauer H, Exner M, et al. Hydrogen sulfide destroys lipid peroxides in oxidized LDL. Biochem J. 2009;420(2):277–81.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls P. The formation and properties of sulphmyoglobin and sulphcatalase. Biochem J. 1961;81:374–83.

    PubMed  CAS  Google Scholar 

  • Nieto N, Friedman SL, Cederbaum AI. Cytochrome P450 2E1-derived reactive oxygen species mediate paracrine stimulation of collagen I protein synthesis by hepatic stellate cells. J Biol Chem. 2002;277(12):9853–64.

    Article  PubMed  CAS  Google Scholar 

  • Pulido R, Hernandez-Garcia M, Saura-Calixto FS. Contribution of beverages to the intake of lipophilic and hydrophilic antioxidants in the Spanish diet. Eur J Clin Nutr. 2003;57(10):1275–82.

    Article  PubMed  CAS  Google Scholar 

  • Schreier SM, Muellner MK, Steinkellner H, Hermann M, Esterbauer H, Exner M, et al. Hydrogen sulfide scavenges the cytotoxic lipid oxidation product 4-HNE. Neurotox Res. 2010;17(3):249–56.

    Article  PubMed  CAS  Google Scholar 

  • Seiler A, Schneider M, Forster H, Stephan R, Wirth EK, Culmsee C, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygemase dependent- and AIF-mediated cell death. Cell Metab. 2008;8(3):237–48.

    Article  PubMed  CAS  Google Scholar 

  • Sitdikova GF, Weiger TM, Hermann A. Hydrogen sulfide increases calcium-activated (BK) channel activity of rat pituitary tumor cells. Pflugers Arch. 2010;459(3):389–97.

    Article  PubMed  CAS  Google Scholar 

  • Stasko A, Brezova V, Zalibera M, Biskupic S, Ondrias K. Electron transfer: A primary step in the reactions of sodium hydrosulphide, and H2S/HS- donor. Free Radic Res. 2009;43(6):581–93.

    Article  PubMed  CAS  Google Scholar 

  • Szabo C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov. 2007;6(11):917–35.

    Article  PubMed  CAS  Google Scholar 

  • Tapley DW, Buettner GR, Shick JM. Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. Biol Bull. 1999;196:52–6.

    Article  CAS  Google Scholar 

  • Thompson RW, Valentine HL, Valentine WM. Cytotoxic mechanisms of hydrosulfide anion and cyanide anion in primary rat hepatocyte cultures. Toxicology. 2003;188(2–3):149–59.

    Article  PubMed  CAS  Google Scholar 

  • Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27(3):502–22.

    Article  PubMed  CAS  Google Scholar 

  • Truong D, Hindmarsh W, O’Brien PJ. The molecular mechanisms of diallyl disulfide and diallyl sulfide induced hepatocyte cytotoxicity. Chem Biol Interact. 2009;180(1):79–88.

    Article  PubMed  CAS  Google Scholar 

  • Truong DH, Eghbal MA, Hindmarsh W, Roth SH, O’Brien PJ. Molecular mechanisms of hydrogen sulfide toxicity. Drug Metab Rev. 2006;38(4):733–44.

    Article  PubMed  CAS  Google Scholar 

  • Tyagi N, Moshal KS, Sen U, Vacek TP, Kumanr M, Hughes Jr WM, et al. H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antiox Redox Signal. 2009;11(1):25–34.

    Article  CAS  Google Scholar 

  • Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS, et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem. 2004;90(3):765–8.

    Article  PubMed  CAS  Google Scholar 

  • Whiteman M, Cheung NS, Zhu YZ, Chu SH, Siau JL, Wong BS, et al. Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun. 2005;326(4):794–8.

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science. 2008;322(5901):587–90.

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Wu D, Wang X, Cederbaum AI. Depletion of cytosolic or mitochondrial thioredoxin increases CYP2E1-induced oxidative stress via an ASK-1-JNK1 pathway in HepG2 cells. Free Radic Biol Med. 2011;51:185–96.

    Article  PubMed  CAS  Google Scholar 

  • Yeum K, Aldini G, Chung H, Krinsky NI, Russell RM. The activities of antioxidant nutrients in human plasma depend on the localization of attacking radical species. J Nutr. 2003;133(8):2688–91.

    PubMed  CAS  Google Scholar 

  • Zhang H, Zhi L, Moochhala S, Moore PK, Bhatia M. Hydrogen sulfide acts as an inflammatory mediator in cecal ligation and puncture-induced sepsis in mice by upregulating the production of cytokines and chemokines via NF-kB. Am J Physiol Lung Cell Mol Physiol. 2007;292(4):L960–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Arthur I. Cederbaum (Mount Sinai School of Medicine, New York, USA) for his gift of C34 and E47 cells and for critical reading of the manuscript. The authors are grateful to Dr. Thomas Goodwin, Dr. Liz Gron and Dr. Randall Kopper (Hendrix College, Conway, AR) for critical reading of the manuscript. This work was supported by Cottrell College Science Award #7854 from Research Corporation for Science Advancement, and NIH grant number P20 RR-16460 from the IDeA Networks of Biomedical Research Excellence Program of the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres A. Caro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caro, A.A., Thompson, S. & Tackett, J. Increased oxidative stress and cytotoxicity by hydrogen sulfide in HepG2 cells overexpressing cytochrome P450 2E1. Cell Biol Toxicol 27, 439–453 (2011). https://doi.org/10.1007/s10565-011-9198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-011-9198-2

Keywords

Navigation