Skip to main content
Log in

Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) is the third gasotransmitter found to be produced endogenously in living cells to exert physiological functions. Large conductance (maxi) calcium-activated potassium channels (BK), which play an important role in the regulation of electrical activity in many cells, are targets of gasotransmitters. We examined the modulating action of H2S on BK channels from rat GH3 pituitary tumor cells using patch clamp techniques. Application of sodium hydrogen sulfide as H2S donor to the bath solution in whole cell experiments caused an increase of calcium-activated potassium outward currents. In single channel recordings, H2S increased BK channel activity in a concentration-dependent manner. Hydrogen sulfide induced a reversible increase in channel open probability in a voltage-dependent, but calcium independent manner. The reducing agent, dithiothreitol, prevented the increase of open probability by H2S, whereas, the oxidizing agent thimerosal increased channel open probability in the presence of H2S. Our data show that H2S augments BK channel activity, and this effect can be linked to its reducing action on sulfhydryl groups of the channel protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    CAS  PubMed  Google Scholar 

  2. Beauchamp RO Jr, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13:25–97

    Article  CAS  PubMed  Google Scholar 

  3. Benham CD (1989) Voltage-gated and agonist-mediated rises in intracellular Ca2+ in rat clonal pituitary cells (GH3) held under voltage clamp. J Physiol 415:143–158

    CAS  PubMed  Google Scholar 

  4. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853

    Article  CAS  PubMed  Google Scholar 

  5. Brenner R, Chen QH, Vilaythong A, Toney GM, Noebels JL, Aldrich RW (2005) BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat Neurosci 8:1752–1759

    Article  CAS  PubMed  Google Scholar 

  6. Brunton PJ, Sausbier M, Wietzorrek G, Sausbier U, Knaus HG, Russell JA, Ruth P, Shipston MJ (2007) Hypothalamic-pituitary-adrenal axis hyporesponsiveness to restraint stress in mice deficient for large-conductance calcium- and voltage-activated potassium (BK) channels. Endocrinology 148:5496–5506

    Article  CAS  PubMed  Google Scholar 

  7. Cheng Y, Gu XQ, Bednarczyk P, Wiedemann FR, Haddad GG, Siemen D (2008) Hypoxia increases activity of the BK-channel in the inner mitochondrial membrane and reduces activity of the permeability transition pore. Cell Physiol Biochem 22:127–136

    Article  CAS  PubMed  Google Scholar 

  8. Davies AG, Pierce-Shimomura JT, Kim H, VanHoven MK, Thiele TR, Bonci A, Bargmann CI, McIntire SL (2003) A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115:655–666

    Article  CAS  PubMed  Google Scholar 

  9. DiChiara TJ, Reinhart PH (1997) Redox modulation of hslo Ca2+-activated K+channels. J Neurosci 17:4942–4955

    CAS  PubMed  Google Scholar 

  10. Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr, Darley-Usmar VM, Kraus DW (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 341:40–51

    Article  CAS  PubMed  Google Scholar 

  11. Dopico AM, Lemos JR, Treistman SN (1996) Ethanol increases the activity of large conductance, Ca(2+)-activated K+channels in isolated neurohypophysial terminals. Mol Pharmacol 49:40–48

    CAS  PubMed  Google Scholar 

  12. Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, Kotagal P, Luders HO, Shi J, Cui J, Richerson GB, Wang QK (2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37:733–738

    Article  CAS  PubMed  Google Scholar 

  13. Eichhorn B, Dobrev D (2007) Vascular large conductance calcium-activated potassium channels: functional role and therapeutic potential. Naunyn Schmiedebergs Arch Pharmacol 376:145–155

    Article  CAS  PubMed  Google Scholar 

  14. Erxleben C, Everhart AL, Romeo C, Florance H, Bauer MB, Alcorta DA, Rossie S, Shipston MJ, Armstrong DL (2002) Interacting effects of N-terminal variation and strex exon splicing on slo potassium channel regulation by calcium, phosphorylation, and oxidation. J Biol Chem 277:27045–27052

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Bereguiain MA, Samhan-Arias AK, Martin-Romero FJ, Gutierrez-Merino C (2008) Hydrogen sulfide raises cytosolic calcium in neurons through activation of L-type Ca2+ channels. Antioxid Redox Signal 10:31–42

    Article  CAS  PubMed  Google Scholar 

  16. Ghatta S, Nimmagadda D, Xu X, O’Rourke ST (2006) Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther 110:103–116

    Article  CAS  PubMed  Google Scholar 

  17. Gong L, Gao TM, Huang H, Tong Z (2000) Redox modulation of large conductance calcium-activated potassium channels in CA1 pyramidal neurons from adult rat hippocampus. Neurosci Lett 286:191–194

    Article  CAS  PubMed  Google Scholar 

  18. Goodwin LR, Francom D, Dieken FP, Taylor JD, Warenycia MW, Reiffenstein RJ, Dowling G (1989) Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J Anal Toxicol 13:105–109

    CAS  PubMed  Google Scholar 

  19. Gragasin FS, Michelakis ED, Hogan A, Moudgil R, Hashimoto K, Wu X, Bonnet S, Haromy A, Archer SL (2004) The neurovascular mechanism of clitoral erection: nitric oxide and cGMP-stimulated activation of BKCa channels. FASEB J 18:1382–1391

    Article  CAS  PubMed  Google Scholar 

  20. Hermann A, Gorman AL (1981) Effects of tetraethylammonium on potassium currents in a molluscan neurons. J Gen Physiol 78:87–110

    Article  CAS  PubMed  Google Scholar 

  21. Jakab M, Schmidt S, Grundbichler M, Paulmichl M, Hermann A, Weiger T, Ritter M (2006) Hypotonicity and ethanol modulate BK channel activity and chloride currents in GH4/C1 pituitary tumour cells. Acta Physiol (Oxf) 187:51–59

    Article  CAS  Google Scholar 

  22. Jakab M, Weiger TM, Hermann A (1997) Ethanol activates maxi Ca2+-activated K+channels of clonal pituitary (GH3) cells. J Membr Biol 157:237–245

    Article  CAS  PubMed  Google Scholar 

  23. Jeong SY, Ha TS, Park CS, Uhm DY, Chung S (2001) Nitric oxide directly activates large conductance Ca2+-activated K+channels (rSlo). Mol Cells 12:97–102

    CAS  PubMed  Google Scholar 

  24. Jin P, Weiger TM, Levitan IB (2002) Reciprocal modulation between the alpha and beta 4 subunits of hSlo calcium-dependent potassium channels. J Biol Chem 277:43724–43729

    Article  CAS  PubMed  Google Scholar 

  25. Kawabata A, Ishiki T, Nagasawa K, Yoshida S, Maeda Y, Takahashi T, Sekiguchi F, Wada T, Ichida S, Nishikawa H (2007) Hydrogen sulfide as a novel nociceptive messenger. Pain 132:74–81

    Article  CAS  PubMed  Google Scholar 

  26. Kimura H (2000) Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 267:129–133

    Article  CAS  PubMed  Google Scholar 

  27. Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18:1165–1167

    CAS  PubMed  Google Scholar 

  28. Lang DG, Ritchie AK (1990) Tetraethylammonium blockade of apamin-sensitive and insensitive Ca2(+)-activated K+channels in a pituitary cell line. J Physiol 425:117–132

    CAS  PubMed  Google Scholar 

  29. Lee JE, Kwak J, Suh CK, Shin JH (2006) Dual effects of nitric oxide on the large conductance calcium-activated potassium channels of rat brain. J Biochem Mol Biol 39:91–96

    CAS  PubMed  Google Scholar 

  30. Leffler CW, Parfenova H, Jaggar JH, Wang R (2006) Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation. J Appl Physiol 100:1065–1076

    Article  CAS  PubMed  Google Scholar 

  31. Li L, Moore PK (2008) Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air? Trends Pharmacol Sci 29:84–90

    Article  PubMed  Google Scholar 

  32. Liu J, Asuncion-Chin M, Liu P, Dopico AM (2006) CaM kinase II phosphorylation of slo Thr107 regulates activity and ethanol responses of BK channels. Nat Neurosci 9:41–49

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Kalogeris T, Yusof M, Davis M, Korthuis R (2009) Hydrogen sulfide preconditioning attenuates ischemia/reperfusion-induces mitochondrial dysfunction in rat intestine by a BkCa channel-dependent mechanism. FASEB J 23:763.6

    Google Scholar 

  34. Liu YC, Lo YK, Wu SN (2003) Stimulatory effects of chlorzoxazone, a centrally acting muscle relaxant, on large conductance calcium-activated potassium channels in pituitary GH3 cells. Brain Res 959:86–97

    Article  CAS  PubMed  Google Scholar 

  35. Martin GE, Hendrickson LM, Penta KL, Friesen RM, Pietrzykowski AZ, Tapper AR, Treistman SN (2008) Identification of a BK channel auxiliary protein controlling molecular and behavioral tolerance to alcohol. Proc Natl Acad Sci U S A 105:17543–17548

    Article  CAS  PubMed  Google Scholar 

  36. Meredith AL, Wiler SW, Miller BH, Takahashi JS, Fodor AA, Ruby NF, Aldrich RW (2006) BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat Neurosci 9:1041–1049

    Article  CAS  PubMed  Google Scholar 

  37. Perez GJ, Bonev AD, Nelson MT (2001) Micromolar Ca(2+) from sparks activates Ca(2+)-sensitive K(+) channels in rat cerebral artery smooth muscle. Am J Physiol Cell Physiol 281:C1769–C1775

    CAS  PubMed  Google Scholar 

  38. Pietrzykowski AZ, Martin GE, Puig SI, Knott TK, Lemos JR, Treistman SN (2004) Alcohol tolerance in large-conductance, calcium-activated potassium channels of CNS terminals is intrinsic and includes two components: decreased ethanol potentiation and decreased channel density. J Neurosci 24:8322–8332

    Article  CAS  PubMed  Google Scholar 

  39. Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32:109–134

    Article  CAS  PubMed  Google Scholar 

  40. Salkoff L, Butler A, Ferreira G, Santi C, Wei A (2006) High-conductance potassium channels of the SLO family. Nat Rev Neurosci 7:921–931

    Article  CAS  PubMed  Google Scholar 

  41. Savage JC, Gould DH (1990) Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J Chromatogr 526:540–545

    Article  CAS  PubMed  Google Scholar 

  42. Shipston MJ, Armstrong DL (1996) Activation of protein kinase C inhibits calcium-activated potassium channels in rat pituitary tumour cells. J Physiol 493(Pt 3):665–672

    CAS  PubMed  Google Scholar 

  43. Sitdikova G, Weiger T, Hermann A (2008) Hydrogen sulfide increases the activity of calcium activated potassium channels (BK) of rat pituitary tumor (GH3) cells. FENS Abstr. 4:180.31

    Google Scholar 

  44. Stipanuk MH, Beck PW (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 206:267–277

    CAS  PubMed  Google Scholar 

  45. Swaroop M, Bradley K, Ohura T, Tahara T, Roper MD, Rosenberg LE, Kraus JP (1992) Rat cystathionine beta-synthase. Gene organization and alternative splicing. J Biol Chem 267:11455–11461

    CAS  PubMed  Google Scholar 

  46. Tang XD, Daggett H, Hanner M, Garcia ML, McManus OB, Brot N, Weissbach H, Heinemann SH, Hoshi T (2001) Oxidative regulation of large conductance calcium-activated potassium channels. J Gen Physiol 117:253–274

    Article  CAS  PubMed  Google Scholar 

  47. Telezhkin V, Brazier SP, Cayzac S, Muller CT, Riccardi D, Kemp PJ (2009) Hydrogen sulfide inhibits human BK(Ca) channels. Adv Exp Med Biol 648:65–72

    Article  CAS  PubMed  Google Scholar 

  48. Thuringer D, Findlay I (1997) Contrasting effects of intracellular redox couples on the regulation of maxi-K channels in isolated myocytes from rabbit pulmonary artery. J Physiol 500(Pt 3):583–592

    CAS  PubMed  Google Scholar 

  49. Vergara C, Latorre R, Marrion NV, Adelman JP (1998) Calcium-activated potassium channels. Curr Opin Neurobiol 8:321–329

    Article  CAS  PubMed  Google Scholar 

  50. Wang G, Thorn P, Lemos JR (1992) A novel large-conductance Ca(2+)-activated potassium channel and current in nerve terminals of the rat neurohypophysis. J Physiol 457:47–74

    CAS  PubMed  Google Scholar 

  51. Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    Article  CAS  PubMed  Google Scholar 

  52. Wang R, Wu L (1997) The chemical modification of KCa channels by carbon monoxide in vascular smooth muscle cells. J Biol Chem 272:8222–8226

    Article  CAS  PubMed  Google Scholar 

  53. Wang ZW, Nara M, Wang YX, Kotlikoff MI (1997) Redox regulation of large conductance Ca(2+)-activated K+channels in smooth muscle cells. J Gen Physiol 110:35–44

    Article  CAS  PubMed  Google Scholar 

  54. Warenycia MW, Goodwin LR, Benishin CG, Reiffenstein RJ, Francom DM, Taylor JD, Dieken FP (1989) Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol 38:973–981

    Article  CAS  PubMed  Google Scholar 

  55. Weiger T, Hermann A (1994) Polyamines block Ca(2+)-activated K+channels in pituitary tumor cells (GH3). J Membr Biol 140:133–142

    CAS  PubMed  Google Scholar 

  56. Weiger TM, Hermann A, Levitan IB (2002) Modulation of calcium-activated potassium channels. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188:79–87

    Article  CAS  PubMed  Google Scholar 

  57. Weiger TM, Holmqvist MH, Levitan IB, Clark FT, Sprague S, Huang WJ, Ge P, Wang C, Lawson D, Jurman ME, Glucksmann MA, Silos-Santiago I, DiStefano PS, Curtis R (2000) A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. J Neurosci 20:3563–3570

    CAS  PubMed  Google Scholar 

  58. Werner ME, Zvara P, Meredith AL, Aldrich RW, Nelson MT (2005) Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel. J Physiol 567:545–556

    Article  CAS  PubMed  Google Scholar 

  59. Xi Q, Tcheranova D, Parfenova H, Horowitz B, Leffler CW, Jaggar JH (2004) Carbon monoxide activates KCa channels in newborn arteriole smooth muscle cells by increasing apparent Ca2+ sensitivity of alpha-subunits. Am J Physiol Heart Circ Physiol 286:H610–H618

    Article  CAS  PubMed  Google Scholar 

  60. Yang W, Yang G, Jia X, Wu L, Wang R (2005) Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J Physiol 569:519–531

    Article  CAS  PubMed  Google Scholar 

  61. Yuan C, O’Connell RJ, Wilson A, Pietrzykowski AZ, Treistman SN (2008) Acute alcohol tolerance is intrinsic to the BKCa protein, but is modulated by the lipid environment. J Biol Chem 283:5090–5098

    Article  CAS  PubMed  Google Scholar 

  62. Zhao W, Wang R (2002) H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283:H474–H480

    CAS  PubMed  Google Scholar 

  63. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20:6008–6016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank V. Kainz for excellent technical support and in particular, H. Adam for his continuous encouragement. The study was funded in part by travel grants to G.S. from University Salzburg, by the Stifungs- und Förderungsgesellschaft der Universität Salzburg (Austria) and from the Russian Foundation of basic research (number 09-04-00748) and by the Russian Ministry of Education (number 2.1.1|/786; Russia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Hermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sitdikova, G.F., Weiger, T.M. & Hermann, A. Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells. Pflugers Arch - Eur J Physiol 459, 389–397 (2010). https://doi.org/10.1007/s00424-009-0737-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0737-0

Keywords

Navigation