Skip to main content

Advertisement

Log in

Explant culture of gastrointestinal tissue: a review of methods and applications

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The gastrointestinal (GI) tract is an important target organ for the toxicity of xenobiotics. The toxic effects of xenobiotics on this complex, heterogeneous structure have been difficult to model in vitro and have traditionally been assessed in vivo. The explant culture of GI tissue offers an alternative approach. Historically, the organotypic culture of the GI tract proved far more challenging than the culture of other tissues, and it was not until the late 1960s that Browning and Trier described the means by which intestinal tissues could be successfully cultured. This breakthrough provided a tool researchers could utilise, and adapt, to investigate topics such as the pathogenesis of inflammatory intestinal diseases, the effect of growth factors and cytokines on intestinal proliferation and differentiation, and the testing of novel xenobiotics for efficacy and safety. This review considers that intestinal explant culture shows much potential for the application of a relatively under-used procedure in future biomedical research. Furthermore, there appear to be many instances where the technique may provide experimental solutions where both cell culture and in vivo models have been unable to deliver conclusive and convincing findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALI:

Air–liquid interface

BrdU:

Bromo-2′-deoxyuridine

EGF:

Epidermal growth factor

EGPx:

Extracellular glutathione peroxidase

EHC:

Enzyme histochemistry

ELISA:

Enzyme-linked immunosorbent assay

ENS:

Enteric nervous system

GI:

Gastrointestinal

IHC:

Immunohistochemistry

IBD:

Inflammatory bowel disease

LPS:

Lipopolysaccharide

NSAID:

Non-steroidal anti-inflammatory drug

SEA:

Staphylococcal enterotoxin A

SEB:

Staphylococcal enterotoxin B

TGF:

Transforming growth factor

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labelling

References

  • Abud HE, Watson N, Heath JK. Growth of intestinal epithelium in organ culture is dependent on EGF signalling. Exp Cell Res. 2005;303:252–62.

    Article  PubMed  CAS  Google Scholar 

  • Autrup H, Barrett LA, Jackson FE, Jesudason ML, Stoner G, Phelps P, et al. Explant culture of human colon. Gastroenterology. 1978a;74:1248–57.

    PubMed  CAS  Google Scholar 

  • Autrup H, Stoner GD, Jackson F, Harris CC, Shamsuddin AK, Barrett LA, et al. Explant culture of rat colon: a model system for studying metabolism of chemical carcinogens. In Vitro. 1978b;14:868–77.

    Article  PubMed  CAS  Google Scholar 

  • Bareiss PM, Metzger M, Sohn K, Rupp S, Frick JS, Autenrieth IB, et al. Organotypical tissue cultures from adult murine colon as an in vitro model of intestinal mucosa. Histochem Cell Biol. 2008;129:795–804.

    Article  PubMed  CAS  Google Scholar 

  • Borsch G, Schmidt G. What’s new in steroid and nonsteroid drug effects on gastroduodenal mucosa? Pathol Res Pract. 1985;180:437–44.

    PubMed  CAS  Google Scholar 

  • Brennan PC, McCullough JS, Carr KE. Variations in cell and structure populations along the length of murine small intestine. Cells Tissues Organs. 1999;164:221–6.

    Article  PubMed  CAS  Google Scholar 

  • Broadhead CL, Bottrill K. Strategies for replacing animals in biomedical research. Mol Med Today. 1997;3:483–7.

    Article  PubMed  CAS  Google Scholar 

  • Browning TH, Trier JS. Organ culture of mucosal biopsies of human small intestine. J Clin Invest. 1969;48:1423–32.

    Article  PubMed  CAS  Google Scholar 

  • Brusko TM, Hulme MA, Myhr CB, Haller MJ, Atkinson MA. Assessing the in vitro suppressive capacity of regulatory T cells. Immunol Invest. 2007;36:607–28.

    Article  PubMed  CAS  Google Scholar 

  • Buck V. Who will start the 3Rs ball rolling for animal welfare? Nature. 2007;446:856.

    Article  PubMed  CAS  Google Scholar 

  • Bullen TF, Forrest S, Campbell F, Dodson AR, Hershman MJ, Pritchard DM, et al. Characterization of epithelial cell shedding from human small intestine. Lab Invest. 2006;86:1052–63.

    Article  PubMed  CAS  Google Scholar 

  • Challacombe DN, Wheeler EE. Trophic action of epidermal growth factor on human duodenal mucosa cultured in vitro. Gut. 1991;32:991–3.

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Bjerknes M. Whole population cell kinetics of mouse duodenal, jejunal, ileal, and colonic epithelia as determined by radioautography and flow cytometry. Anat Rec. 1982;203:251–64.

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Bjerknes M. Cell production in mouse intestinal epithelium measured by stathmokinetic flow cytometry and coulter particle counting. Anat Rec. 1983;207:427–34.

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat. 1974;141:461–79.

    Article  PubMed  CAS  Google Scholar 

  • Clayton RF, Rinaldi A, Kandyba EE, Edward M, Willberg C, Klenerman P, et al. Liver cell lines for the study of hepatocyte functions and immunological response. Liver Int. 2005;25:389–402.

    Article  PubMed  Google Scholar 

  • Danielsen EM, Sjöström H, Norén O, Bro B, Dabelsteen E. Biosynthesis of intestinal microvillar proteins. Characterization of intestinal explants in organ culture and evidence for the existence of pro-forms of the microvillar enzymes. Biochem J. 1982;202:647–54.

    PubMed  CAS  Google Scholar 

  • De Kanter R, Monshouwer M, Meijer DKF, Groothuis GMM. Precision cut organ slices as a tool to study toxicity and metabolism of xenobiotics with special reference to non-hepatic tissues. Curr Drug Metab. 2002a;3:39–59.

    Article  PubMed  Google Scholar 

  • De Kanter R, De Jager MH, Draaisma AL, Jurva JU, Olinga P, Meijer DKF, et al. Drug-metabolizing activity of human and rat liver, lung, kidney and intestine slices. Xenobiotica. 2002b;32:349–62.

    Article  PubMed  Google Scholar 

  • De Kanter R, Monshouwer M, Draaisma AL, De Jager MH, De Graaf IAM, Proost JH, et al. Prediction of whole-body metabolic clearance of drugs through the combined use of slices from rat liver, lung, kidney, small intestine and colon. Xenobiotica. 2004;34:229–41.

    Article  PubMed  Google Scholar 

  • Di Sabatino A, Pickard KM, Rampton D, Kruidenier L, Rovedatti L, Leakey NA, et al. Blockade of transforming growth factor beta upregulates T-box transcription factor T-bet, and increases T helper cell type 1 cytokine and matrix metalloproteinase-3 production in the human gut mucosa. Gut. 2008;57:605–12.

    Article  PubMed  Google Scholar 

  • Dionne S, D’Agata ID, Hiscott J, Vanounou T, Seidman EG. Colonic explant production of IL-1and its receptor antagonist is imbalanced in inflammatory bowel disease (IBD). Clin Exp Immunol. 1998;112:435–42.

    Article  PubMed  CAS  Google Scholar 

  • Dionne S, Laberge S, Deslandres C, Seidman EG. Modulation of cytokine release from colonic explants by bacterial antigens in inflammatory bowel disease. Clin Exp Immunol. 2003;133:108–14.

    Article  PubMed  CAS  Google Scholar 

  • Emoto C, Yamazaki H, Yamasaki S, Shimada N, Nakajima M, Yokoi T. Use of everted sacs of mouse small intestine as enzyme sources for the study of drug oxidation activities in vitro. Xenobiotica. 2000;30:971–82.

    Article  PubMed  CAS  Google Scholar 

  • Emoto C, Yamazaki H, Yamasaki S, Shimada N, Nakajima M, Yokoi T. Characterization of cytochrome P450 enzymes involved in drug oxidations in mouse intestinal microsomes. Xenobiotica. 2002;10:943–53.

    Google Scholar 

  • Fara JW, Anderson LD, Casper AG, Myrback RE. Assessment and validation of animal models to evaluate topical effects of substances on gastrointestinal mucosa. Pharm Res. 1988;5:165–71.

    Article  PubMed  CAS  Google Scholar 

  • Finney KJ, Ince P, Appleton DR, Sunter JP, Watson AJ. A comparison of crypt-cell proliferation in rat colonic mucosa in vivo and in vitro. J Anat. 1986;149:177–88.

    PubMed  CAS  Google Scholar 

  • Fischer A. A pure strain of cartilage cell in vitro. JEM. 1922;36:379–86.

    Article  CAS  Google Scholar 

  • Fletcher PS, Elliott J, Grivel JC, Margolis L, Anton P, McGowan I, et al. Ex vivo culture of human colorectal tissue for the evaluation of candidate microbicides. AIDS. 2006;20:1237–45.

    Article  PubMed  Google Scholar 

  • Goyal RK, Hirano I. The enteric nervous system. New Engl J Med. 1996;334:1106–15.

    Article  PubMed  CAS  Google Scholar 

  • Hearn CJ, Young HM, Ciampoli D, Lomax AEG, Newgreen D. Caternary cultures of embryonic gastrointestinal tract support organ morphogenesis, motility, neural crest cell migration, and cell differentiation. Dev Dynam. 1999;214:239–47.

    Article  CAS  Google Scholar 

  • Howdle PD. Organ culture of gastrointestinal mucosa—a technique for the study of the human gastrointestinal tract. Postgrad Med J. 1984;60:645–52.

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Iwatsubo T, Kanamitsu S, Nakajima Y, Sugiyama Y. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Ann Rev Pharmacol Toxicol. 1998;38:461–99.

    Article  CAS  Google Scholar 

  • Jacobs JJ, Lehé C, Cammans KD, Das PK, Elliott GR. An in vitro model for detecting skin irritants: methyl green-pyronine staining of human skin explant cultures. Toxicol in Vitro. 2002;16:581–8.

    Article  PubMed  CAS  Google Scholar 

  • Jarry A, Bach-Ngohou K, Masson D, Dejoie T, Lehur PA, Mosnier JF, et al. Human colonic myocytes are involved in postischemic inflammation through ADAM17-dependent TNFalpha production. Br J Pharmacol. 2006;147:64–72.

    Article  PubMed  CAS  Google Scholar 

  • Jarry A, Bossard C, Bou-Hanna C, Masson D, Espaze E, Denis MG, et al. Mucosal IL-10 and tgf-beta play crucial roles in preventing lps-driven, ifn-gamma-mediated epithelial damage in human colon explants. J Clin Invest. 2008;118:1132–42.

    PubMed  CAS  Google Scholar 

  • Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995;16:351–80.

    Article  PubMed  CAS  Google Scholar 

  • Kik MJ, Koninkx JF, van den Muysenberg A, Hendriksen F. Pathological effects of Phaseolus vulgaris isolectins on pig jejunal mucosa in organ culture. Gut. 1991;32:886–92.

    Article  PubMed  CAS  Google Scholar 

  • Lehé CL, Jacobs JJ, Hua CM, Courtellemont P, Elliott GR, Das PK. Subtoxic concentrations of allergenic haptens induce LC migration and maturation in a human organotypic skin explant culture model: a novel method for identifying potential contact allergens. Exp Dermatol. 2006;15:421–31.

    Article  PubMed  Google Scholar 

  • Lindley RM, Hawcutt DB, Connell MG, Almond SL, Vannucchi MG, Faussone-Pellegrini MS, et al. Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglionic embryonic distal colon. Gastroenterology. 2008;135:205–16.

    Article  PubMed  Google Scholar 

  • Losonsky GA, Fantry GT, Reymann M, Lim Y. Validation of a gastrointestinal explant system for measurement of mucosal antibody production. Clin Diagn Lab Immunol. 1999;6:803–7.

    PubMed  CAS  Google Scholar 

  • Manzano M, Bueno P, Rueda R, Ramirez-Tortosa CL, Prieto PA, Lopez-Pedrosa JM. Intestinal toxicity induced by 5-fluorouracil in pigs: a new preclinical model. Chemotherapy. 2007;53:344–55.

    Article  PubMed  CAS  Google Scholar 

  • Maximow A. Tissue cultures of young mammalian embryos. Contributions to Embryology. 1925;16:47–133.

    Google Scholar 

  • Mazzarella G, Stefanile R, Camarca A, Giliberti P, Cosentini E, Marano C, et al. Gliadin activates HLA class I-restricted CD8+ T cells in celiac disease intestinal mucosa and induces the enterocyte apoptosis. Gastroenterology. 2008;134:1017–27.

    Article  PubMed  CAS  Google Scholar 

  • Metzger M, Bareiss PM, Nikolov I, Skutella T, Just L. Three-dimensional slice cultures from murine fetal gut for investigations of the enteric nervous system. Dev Dyn. 2007;236:128–33.

    Article  PubMed  Google Scholar 

  • Metzger M, Bareiss PM, Danker T, Wagner S, Hennenlotter J, Guenther E, et al. Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system. Gastroenterology. 2009;137:2063–73.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JD, Mitchell J, Peters TJ. Enzyme changes in human small bowel mucosa during culture in vitro. Gut. 1974;15:805–11.

    Article  PubMed  CAS  Google Scholar 

  • Natarajan D, Grigoriou M, Marcos-Gutierrez CV, Atkins C, Pachnis V. Multipotential progenitors of the mammalian enteric nervous system capable of colonising aganglionic bowel in organ culture. Development. 1999;126:157–68.

    PubMed  CAS  Google Scholar 

  • Nigsch F, Klaffke W, Miret S. In vitro models for processes involved in intestinal absorption. Expert Opin Drug Metab Toxicol. 2007;3:545–56.

    Article  PubMed  CAS  Google Scholar 

  • OECD. Final Report of the OECD Workshop on the Harmonisation of Validation and Acceptance Criteria for Alternative Toxicological Test Methods (Solna Report, 1996) as presented to the Seventh Meeting of the National Co-ordinators of the Test Guidelines Programme, 18–19 September 1996. ENV/MC/CHEM/TG(96)9. Paris: OECD, 1996

  • OECD. Final Report of the OECD Conference on the Validation and Regulatory Acceptance of New and Updated Methods in Hazard Assessment (Stockholm Report). ENV/JM/TG/M(2002)2. Paris: OECD, 2002.

  • Ootani A, Toda S, Fujimoto K, Sugihara H. An air–liquid interface promotes the differentiation of gastric surface mucous cells (GSM06) in culture. Biochem Biophys Res Commun. 2000;271:741–6.

    Article  PubMed  CAS  Google Scholar 

  • Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med. 2009;15:701–6.

    Article  PubMed  CAS  Google Scholar 

  • Ouellette AJ. Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol. 2010;26:546–53.

    Article  Google Scholar 

  • Porter EM, Bevins CL, Ghosh D, Ganz T. The multifaceted Paneth cell. Cell Mol Life Sci. 2002;59:156–70.

    Article  PubMed  CAS  Google Scholar 

  • Preynat-Seauve O, Suter DM, Tirefort D, Turchi L, Virolle T, Chneiweiss H, et al. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture. Stem Cells. 2009;27:509–20.

    Google Scholar 

  • Quinlan JM, Yu WY, Hornsey MA, Tosh D, Slack JM. In vitro culture of embryonic mouse intestinal epithelium: cell differentiation and introduction of reporter genes. BMC Dev Biol. 2006;6:24.

    Article  PubMed  Google Scholar 

  • Randall KJ, Foster JR. The demonstration of immunohistochemical biomarkers in methyl methacrylate-embedded plucked human hair follicles. Toxicol Pathol. 2007;35:952–7.

    Article  PubMed  CAS  Google Scholar 

  • Robertson JM, Grant G, Allen-Vercoe E, Woodward MJ, Pusztai A, Flint HJ. Adhesion of Salmonella enterica var Enteritidis strains lacking fimbriae and flagella to rat ileal explants cultured at the air interface or submerged in tissue culture medium. J Med Microbiol. 2000;49:691–6.

    PubMed  CAS  Google Scholar 

  • Rouet-Benzineb P, Rouyer-Fessard C, Jarry A, Avondo V, Pouzet C, Yanagisawa M, et al. Orexins acting at native OX(1) receptor in colon cancer and neuroblastoma cells or at recombinant OX(1) receptor suppress cell growth by inducing apoptosis. J Biol Chem. 2004;279:45875–86.

    Article  PubMed  CAS  Google Scholar 

  • Rowland IR, Mallett AK, Wise A. The effect of diet on the mammalian gut flora and its metabolic activities. Crit Rev Toxicol. 1985;16:31–103.

    Article  PubMed  CAS  Google Scholar 

  • Sambruy Y, Ferruzza S, Ranaldi G, De Angelis I. Intestinal cell culture models: applications in toxicology and pharmacology. Cell Biol Toxicol. 2001;17:301–17.

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.

    Article  PubMed  CAS  Google Scholar 

  • Schiff LJ. Organ cultures of rat and hamster colon. In Vitro. 1975;11:46–9.

    Article  PubMed  CAS  Google Scholar 

  • Seeber JW, Zorn-Kruppa M, Lombardi-Borgia S, Scholz H, Manzer AK, Rusche B, et al. Characterisation of human corneal epithelial cell cultures maintained under serum-free conditions. Altern Lab Anim. 2008;36:569–83.

    PubMed  CAS  Google Scholar 

  • Shamsuddin AK, Barrett LA, Autrup H, Harris CC, Trump BF. Long-term organ culture of adult rat colon. Pathol Res Pract. 1978;163:362–72.

    PubMed  CAS  Google Scholar 

  • Simon-Assmann P, Turck N, Sidhoum-Jenny M, Gradwohl G, Kedinger M. In vitro models of intestinal epithelial cell differentiation. Cell Biol Toxicol. 2007;23:241–56.

    Article  PubMed  CAS  Google Scholar 

  • Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell. 2010;142:134–44.

    Article  Google Scholar 

  • Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 1991;37:173–82.

    Article  PubMed  CAS  Google Scholar 

  • Strangeways TSP, Fell HB. Experimental studies on the differentiation of embryonic tissues growing in vivo and in vitro. I. The development of the undifferentiated limb-bud (a) when subcutaneously grafted into the post-embryonic chick and (b) when cultivated in vitro. Proc R Soc Lond B. 1926;99:340–66.

    Article  Google Scholar 

  • Takemoto K, Yamazaki H, Tanaka Y, Nakajima M, Yokoi T. Catalytic activities of cytochrome P450 enzymes and UDP-glucuronosyltransferases involved in drug metabolism in rat everted sacs and intestinal microsomes. Xenobiotica. 2003;33:43–55.

    Article  PubMed  CAS  Google Scholar 

  • Tham DM, Whitin JC, Kim KK, Zhu SX, Cohen HJ. Expression of extracellular glutathione peroxidase in human and mouse gastrointestinal tract. Am J Physiol. 1998;275:G1463–71.

    PubMed  CAS  Google Scholar 

  • Thomson D. Some further researches on the cultivation of tissues in vitro. Proc R Soc Med. 1914;7:21–46.

    Google Scholar 

  • Trowell OA. The culture of mature organs in a synthetic medium. Exp Cell Res. 1959;16:118–47.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler EE, Challacombe DN. The trophic action of growth hormone, insulin-like growth factor-I, and insulin on human duodenal mucosa cultured in vitro. Gut. 1997;40:57–60.

    PubMed  CAS  Google Scholar 

  • Yeh TH, Tsai CH, Chen YS, Hsu WC, Cheng CH, Hsu CJ, et al. Increased communication among nasal epithelial cells in air–liquid interface culture. Laryngoscope. 2007;117:1439–44.

    Article  PubMed  Google Scholar 

  • Young B, Heath JW. Wheater’s functional histology. 4th ed. London: Churchill Livingstone; 2000. p. 249–73.

    Google Scholar 

  • Zachrisson K, Neopikhanov V, Wretlind B, Uribe A. Mitogenic action of tumour necrosis factor-alpha and interleukin-8 on explants of human duodenal mucosa. Cytokine. 2001;15:148–55.

    Article  PubMed  CAS  Google Scholar 

  • Zak O, O’Reilly T. Animal models in the evaluation of antimicrobial agents. Antimicrob Agents Chemother. 1991;35:1527–31.

    PubMed  CAS  Google Scholar 

  • Zimmermann GS, Neurohr C, Villena-Hermoza H, Hatz R, Behr J. Anti-inflammatory effects of antibacterials on human bronchial epithelial cells. Respir Res. 2009;29:10–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Randall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randall, K.J., Turton, J. & Foster, J.R. Explant culture of gastrointestinal tissue: a review of methods and applications. Cell Biol Toxicol 27, 267–284 (2011). https://doi.org/10.1007/s10565-011-9187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-011-9187-5

Keywords

Navigation