Skip to main content
Log in

Characterization of ochratoxin A-induced apoptosis in primary rat hepatocytes

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The main target organ of the mycotoxin ochratoxin A (OTA) in mammals is the kidney but OTA has also been shown to be hepatotoxic in rats and to induce tumors in mouse liver. Even at very low concentrations, OTA causes perturbations of cellular signaling pathways as well as enhanced apoptosis. OTA has been extensively studied in kidney cell systems. Since this substance also affects liver health, we focused our work on apoptosis-related events induced by OTA in primary rat hepatocytes. We performed pathway-specific polymerase chain reaction arrays to assess the expression of genes involved in apoptosis. Treatment with 1 µM OTA for 24 h caused marked changes in apoptosis-related gene expression. Genes as apaf1, bad, caspase 7, polb (DNA polymerase beta, performs base excision repair), and p53, which are marker genes for DNA damage, were upregulated. FAS and faslg were also markedly induced by treatment with OTA. Treatment of hepatocytes with OTA led to a concentration-dependent inhibition of protein biosynthesis. Apoptosis-inducing factor was released from mitochondria following OTA treatment; the mycotoxin induced the activity of caspases 8, 9, and 3/7 and caused chromatin condensation and fragmentation. Caspase inhibition led to a significant but not complete reduction of OTA-induced apoptosis. Our data suggest that not only OTA leads to p53-dependent apoptosis in rat hepatocytes but it also hints to other mechanisms, independent of caspase activation or protein biosynthesis, being involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AIF:

Apoptosis-inducing factor

CAD:

Caspase-activated DNase

CHX:

Cycloheximide

DAPI:

4′, 6-Diamidino-2-phenylindole

DMSO:

Dimethyl sulfoxide

DTT:

Dithiothreitol

DFF:

DNA fragmentation factor

ICAD:

Inhibitor of caspase-activated DNase

OTA:

Ochratoxin A

PIPES:

Piperazine-N,N′-bis(2-ethanesulfonic acid)

PBS:

Phosphate-buffered saline

PVDF:

Polyvinylidene fluoride

qPCR:

Quantitative polymerase chain reaction

ROS:

Reactive oxygen species

c T :

Threshold cycle

TBS:

Tris-buffered saline

VDAC:

Voltage-dependent anion channel

References

  • Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281:1322–6.

    Article  CAS  PubMed  Google Scholar 

  • Al-Anati L, Katz N, Petzinger E. Interference of arachidonic acid and its metabolites with TNF-α release by ochratoxin A from rat liver. Toxicology. 2005;208:335–46.

    Article  CAS  PubMed  Google Scholar 

  • Alessenko AV, Boikov P, Filippova GN, Khrenov AV, Loginov AS, Makarieva ED. Mechanisms of cycloheximide-induced apoptosis in liver cells. FEBS Lett. 1997;416:113–6.

    Article  CAS  PubMed  Google Scholar 

  • Assaf H, Azouri H, Pallardy M. Ochratoxin A induces apoptosis in human lymphocytes through down regulation of Bcl-xL. Toxicol Sci. 2004;79:335–44.

    Article  CAS  PubMed  Google Scholar 

  • Atroshi F, Biese I, Saloniemi H, Ali-Vehmas T, Saari S, Rizzo A, et al. Significance of apoptosis and its relationship to antioxidants after ochratoxin A administration in mice. J Pharm Pharmaceut Sci. 2000;3:281–91.

    CAS  Google Scholar 

  • Basu A, Haldar S. The relationship between Bcl2, Bax and p53: consequences for cell cycle progression and cell death. Mol Hum Reprod. 1998;4:1099–109.

    Article  CAS  PubMed  Google Scholar 

  • Bennett JW, Klich M. Mycotoxins. Clin Microbiol Rev. 2003;16:497–516.

    Article  CAS  PubMed  Google Scholar 

  • Blom WM, de Bont HJGM, Meijerman I, Mulder GJ, Nagelkerke JF. Prevention of cycloheximide-induced apoptosis in hepatocytes by adenosine and by caspase inhibitors. Biochem Pharmacol. 1999;58:1891–8.

    Article  CAS  PubMed  Google Scholar 

  • Boesch-Saadatmandi C, Loboda A, Jozkowicz A, Huebbe P, Blank R, Wolffram S, et al. Effect of ochratoxin A on redux-regulated transcription factors, antioxidant enzymes and glutathione-S-transferase in cultured kidney tubulus cells. Food Chem Toxicol. 2008;46:2665–71.

    Article  CAS  PubMed  Google Scholar 

  • Bouaziz C, Sharaf el dein O, El Golli E, Abid-Essefi S, Brenner C, Lemaire C, et al. Different apoptotic pathways induced by zearalenone, T-2 toxin and ochratoxin A in human hepatoma cells. Toxicology. 2008;254:19–28.

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  • Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269–90.

    Article  CAS  PubMed  Google Scholar 

  • Cote J, Ruiz-Carrillo A. Primers for mitochondrial DNA replication generated by endonuclease G. Science. 1993;261:765–9.

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Park G, Perry JL, Il’ichev YV, Bow DAJ, Pritchard JB, et al. Molecular aspects of the transport and toxicity of ochratoxin A. Acc Chem Res. 2004;37:874–81.

    Article  CAS  PubMed  Google Scholar 

  • Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116:205–19.

    Article  CAS  PubMed  Google Scholar 

  • Delatour T, Mally A, Richoz J, Özden S, Dekant W, Ihmels H, et al. Absence of 2′-deoxyguanosine-carbon 8-bound ochratoxin A adduct in rat kidney DNA monitored by isotope dilution LC–MS/MS. Mol Nutr Food Res. 2008;52:427–82.

    Article  Google Scholar 

  • Dirheimer G, Creppy EE. Mechanism of action of ochratoxin A. IARC Sci Publ. 1991;115:171–86.

    CAS  PubMed  Google Scholar 

  • Dörrenhaus A, Föllmann W. Effects of ochratoxin A on DNA repair in cultures of rat hepatocytes and porcine urinary bladder epithelial cells. Arch Toxicol. 1997;71:709–13.

    Article  PubMed  Google Scholar 

  • Dragan YP, Bidlack WR, Cohen SM, Goldsworthy TL, Hard GC, Howard PC, et al. Implications of apoptosis for toxicity, carcinogenicity, and risk assessment: fumonisin B1 as an example. Toxicol Sci. 2001;61:6–17.

    Article  CAS  PubMed  Google Scholar 

  • Föllmann W, Lucas S. Effects of the mycotoxin ochratoxin A in a bacterial and a mammalian in vitro mutagenicity test system. Arch Toxicol. 2003;77:298–304.

    PubMed  Google Scholar 

  • Fornace AJ Jr, Zmudzka B, Hollander MC, Wilson SH. Induction of β-polymerase mRNA by DNA-damaging agents in Chinese hamster ovary cells. Mol Cell Biol. 1989;9:851–3.

    CAS  PubMed  Google Scholar 

  • Fortin A, Cregan SP, MacLaurin JG, Kushwaha N, Hickman ES, Thompson CS, et al. APAF1 is a key transcriptional target for p53 in the regulation of neural cell death. J Cell Biol. 2001;155:207–16.

    Article  CAS  PubMed  Google Scholar 

  • Gagliano N, Doone ID, Torri C, Migliori M, Grizzi F, Milzani A, et al. Early cytotoxic effects of ochratoxin A in rat liver: a morphological, biochemical and molecular study. Toxicology. 2006;225:214–24.

    Article  CAS  PubMed  Google Scholar 

  • Gekle M, Sauvant C, Schwerdt G. Ochratoxin A at nanomolar concentrations: a signal modulator in renal cells. Mol Nutr Food Res. 2005;49:118–30.

    Article  CAS  PubMed  Google Scholar 

  • Helinek TG, Devlin TM, Ch’ih JJ. Initial inhibition and recovery of protein synthesis in cycloheximide-treated hepatocytes. Biochem Pharmacol. 1982;31:1219–25.

    Article  CAS  PubMed  Google Scholar 

  • International Agency for Research on Cancer. The evaluation of carcinogenic risks to human. IARC Monographs 56. Lyons: IARC; 1997.

    Google Scholar 

  • Ishihara Y, Shimamoto N. Involvement of endonuclease G in nucleosomal DNA fragmentation under sustained endogenous oxidative stress. J Biol Chem. 2006;281:6726–33.

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Kiyosawa N, Kumagi K, Manabe S, Matsunuma N, Yamoto T. Molecular mechanism investigation of cycloheximide-induced hepatocytes apoptosis in rat livers by morphological and microarray analysis. Toxicology. 2006;219:175–86.

    Article  CAS  PubMed  Google Scholar 

  • Jackel MC. Die genetische Kontrolle des programmierten Zelltod (Apoptose). HNO. 1998;46:614–25.

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Du W, Hesse K, Wu M. The Bad guy cooperates with a good Cop p53: Bad is transcriptionally up-regulated by p53 and forms Bad/p53 complex at the mitochondria to induce apoptosis. Mol Cell Biol. 2006;26:9071–82.

    Article  CAS  PubMed  Google Scholar 

  • Kamp HG, Eisenbrand G, Schlatter J, Würth K, Janzowski C. Ochratoxin A: induction of (oxidative) DNA damage, cytotoxicity and apoptosis in mammalian cell lines and primary cells. Toxicology. 2005;206:413–25.

    Article  CAS  PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    CAS  PubMed  Google Scholar 

  • Kulms D, Schwarz T. Independent contribution of three different pathways to ultraviolet-B-induced apoptosis. Biochem Pharmacol. 2002;64:837–41.

    Article  CAS  PubMed  Google Scholar 

  • Lawen A. Apoptosis—an introduction. Bioassays. 2003;25:888–96.

    Article  CAS  Google Scholar 

  • Luhe A, Hildebrand H, Bach U, Dingermann T, Ahr H-J. A new approach to studying ochratoxin A (OTA)-induced nephrotoxicity: expression profiling in vivo and in vitro employing cDNA microarrays. Toxicol Sci. 2003;73:315–28.

    Article  PubMed  Google Scholar 

  • MacLachlan TK, El-Deiry WS. Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc Natl Acad Sci U S A. 2002;9:9492–7.

    Article  Google Scholar 

  • Mally A, Dekant W. Mycotoxins and the kidney: modes of action for renal tumor formation by ochratoxin A in rodents. Mol Nutr Food Res. 2009;53:467–78. doi:10.1002/mnfr.200800149.

    Article  CAS  PubMed  Google Scholar 

  • Marin-Kuan M, Nestler S, Verguet C, Bezencon C, Piguet D, Mansourian R, et al. A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin A carcinogenicity in rat. Toxicol Sci. 2006;89:120–34.

    Article  CAS  PubMed  Google Scholar 

  • Marin-Kuan M, Cavin C, Delatour T, Schilter B. Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms. Toxicon. 2008;52:195–202.

    Article  CAS  PubMed  Google Scholar 

  • National Toxicology Program. 11th Report on carcinogens, ochratoxin A. 2005

  • O’Brian J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267:5421–6.

    Article  Google Scholar 

  • Obrig TG, Culp WJ, McKeehan WL, Hardesty B. The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J Biol Chem. 1971;246:174–81.

    CAS  PubMed  Google Scholar 

  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:2002–7.

    Article  Google Scholar 

  • Rached E, Pfeiffer E, Dekant W, Mally A. Ochratoxin A: apoptosis and aberrant exit from mitosis due to perturbation of microtubule dynamics? Toxicol Sci. 2006;92:78–86.

    Article  CAS  PubMed  Google Scholar 

  • Ringot D, Chango A, Schneider Y-J, Larondelle Y. Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chem Biol Interact. 2006;159:18–46.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Carrillo A, Renaud J. Endonuclease G: a (dG)n X (dC)n-specific DNase from higher eukaryotes. EMBO J. 1978;6:401–7.

    Google Scholar 

  • Samejima K, Earnshaw WC. Thrashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol. 2005;6:677–88.

    Article  CAS  PubMed  Google Scholar 

  • Sauvant C, Holzinger H, Gekle M. The nephrotoxin ochratoxin A induces key parameters of chronic interstitial nephropathy in renal proximal tubular cells. Cell Physiol Biochem. 2005;15:125–34.

    Article  CAS  PubMed  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, et al. Two CD95 (APO-1/Fas) signalling pathways. EMBO. 1998;17:1675–87.

    Article  CAS  Google Scholar 

  • Schilter B, Marin-Kuan M, Delatour T, Nestler S, Mantle P, Cavin C. Ochratoxin A: potential epigenetic mechanisms of toxicity and carcinogenicity. Food Addit Contam. 2005;22(Suppl 1):88–93.

    Article  CAS  PubMed  Google Scholar 

  • Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 2004;64:7183–90.

    Article  CAS  PubMed  Google Scholar 

  • Schrenk D, Karger A, Lipp HP, Bock KW. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin and ethinylestradiol as co-mitogens in cultured rat hepatocytes. Carcinogenesis. 1992;13:453–6.

    Article  CAS  PubMed  Google Scholar 

  • Schwerdt G, Freudinger R, Mildenberger S, Silbernagl S, Gekle M. The nephrotoxin ochratoxin A induces apoptosis in cultured human proximal tubule cells. Cell Biol Toxicol. 1999;15:405–15.

    Article  CAS  PubMed  Google Scholar 

  • Scibelli A, Tafuri S, Ferrante MC, Alimenti E, Naso B, Lucisano A, et al. Ochratoxin A affects COS cell adhesion and signaling. Toxicol Appl Pharmacol. 2003;192:222–30.

    Article  CAS  PubMed  Google Scholar 

  • Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83.

    Article  CAS  PubMed  Google Scholar 

  • Simmons MJ, Fan G, Wong W-X, Degenhardt K, Ehite E, Gelinas C. Bfl-1/A1 functions, similar to Mcl-1, as a selective tBid and Bak antagonist. Oncogene. 2008;27:1421–8.

    Article  CAS  PubMed  Google Scholar 

  • Temme C, Weissbach R, Lilie H, Wilson C, Meinhart A, Meyer S, et al. The Drosophila melanogaster gene CG4930 encodes a high affinity inhibitor for endonuclease G. J Biol Chem. 2009;284:8337–48.

    Article  CAS  PubMed  Google Scholar 

  • Widlak P. The DFF40/CAD endonuclease and its role in apoptosis. Acta Biochim Pol. 2000;47:1037–44.

    CAS  PubMed  Google Scholar 

  • Wörner W, Schrenk D. Influence of liver tumor promoters on apoptosis in rat hepatocytes induced by 2-acetaminofluorene, ultraviolet light, or transforming growth factor β1. Cancer Res. 1996;56:1272–8.

    PubMed  Google Scholar 

  • Yang C, Kaushal V, Haun RS, Seth R, Shah SV, Kaushal GP. Transcriptional activation of caspase-6 and -7 genes by cisplatin-induced p53 and its functional significance in cisplatin nephrotoxicity. Cell Death Diff. 2008;15:530–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Schrenk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopra, M., Link, P., Michels, C. et al. Characterization of ochratoxin A-induced apoptosis in primary rat hepatocytes. Cell Biol Toxicol 26, 239–254 (2010). https://doi.org/10.1007/s10565-009-9131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-009-9131-0

Keywords

Navigation