Skip to main content
Log in

Expression of Cell Cycle, Oxidative Stress, and Apoptosis Related Genes Chek1, Hmox1, Casp7 in Rat Liver Exposed to Carbon Tetrachloride

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Carbon tetrachloride is a well-studied hepatotropic poison. Animal models of exposure to carbon tetrachloride resemble acute liver damage in humans. This paper presents the study of the expression of genes related to cell cycle control, apoptosis, and oxidative stress in a model of carbon tetrachloride-induced toxic hepatitis in rats. White mongrel male rats were injected with a 50% oil solution of carbon tetrachloride at a dose of 0.125–4.000 g/kg (experimental group) or olive oil (control group). The animals were decapitated 24 and 72 h after the administration of carbon tetrachloride, and the qRT-PCR expression levels of the genes encoding hemoxygenase-1 (Hmox1), cell cycle checkpoint kinase-1 (Chek1), and caspase-7 (Casp7) in the liver were analyzed. The increase in the expression levels of Hmox1 and Chek1 after exposure was detected. These genes may either play a role in promoting pathological oxidative stress in the liver or be a part of a stress response. We have concluded that the major pathway of the liver damage in carbon tetrachloride exposed animals is necrosis rather than apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Valeeva E.T. 2011. Professional toxic lesions of the liver in liquid fuel production workers. Zdravookhr. Ross. Federatsii. 4, 50–51.

    Google Scholar 

  2. Kosarev V.V., Babanov S.A. 2009. Toxic (toxic-allergic) hepatitis. Gastroenterologiya. Suppl. to Consilium Medicum. 2, 29–30.

    Google Scholar 

  3. Vladimirov Yu.A. 2000. Free radicals in biological systems. Soros. Obraz. Zh. 12, 13–19.

    Google Scholar 

  4. Golikov S.N., Sanotskii I.V., Tiunov L.A. (1986) Obshchie mekhanizmy toksicheskogo deistviya (General Mechanisms of Toxic Action). Leningrad: Meditsina.

  5. Kravchenko L.V, Trusov N.V., Uskova M.A., Aksenov I.B., Avren’eva L.I., Guseva G.V., Vasil’eva M.A., Selifanov A.V., Tutel’yan V.A. 2009. Characteristics of acute toxic action of carbon tetrachloride as a model of oxidative stress. Toksikol. Vestn. 1, 12–18.

    Google Scholar 

  6. Weber L.W., Boll M., Stampfl A. 2003. Hepatotoxity and mechanism of action of haloalcanes: Carbon tetrachloride as a toxicological model. Crit. Ref. Toxicol. 33, 105–136.

    Article  CAS  Google Scholar 

  7. Li Volti G., Sacerdoti D., Di Giacomo C., Barcellona M.L., Scacco A., Murabito P., Biondi A., Basile F., Gazzolo D., Abella R., Frigiola A., Galvano F. 2008. Natural heme oxygenase-1 inducers in hepatobiliary function. World J. Gastroenterol. 14, 6122–6132.

    Article  CAS  PubMed  Google Scholar 

  8. Wen T., Guan L., Zhang Y.L., Zhao J.Y. 2006. Dynamic changes of heme oxygenase-1 and carbon monoxide production in acute liver injury induced by carbon tetrachloride in rats. Toxicology. 228, 51–57.

    Article  CAS  PubMed  Google Scholar 

  9. Abraham N.G., Kappas A. 2008. Pharmacological and clinical aspects of heme oxygenase. Pharmacol. Rev. 60, 79–127.

    Article  CAS  PubMed  Google Scholar 

  10. Soares M.P., Bach F.H. 2009. Heme oxygenase-1: From biology to therapeutic potential. Trends Mol. Med. 15, 50–58.

    Article  CAS  PubMed  Google Scholar 

  11. Chinnaiyan A.M., Dixit V.M. 1996. The cell-death machine. Curr. Biol. 6, 555–562.

    Article  CAS  PubMed  Google Scholar 

  12. Vladimirskaya E.B. 2002. Mechansisms of apoptotic cell death. Gematol. Transfuziol. 47, 35–40.

    CAS  Google Scholar 

  13. Ryzhov S.V., Novikov V.V. 2002. Molecular mechanisms of apoptotic processes. Ross. Bioterapevt. Zh. 1, 27–33.

    Google Scholar 

  14. Lamkanfi M., Kanneganti T.D. 2010. Caspase-7: A protease involved in apoptosis and inflammation. Int. J. Biochem. Cell Biol. 42, 21–24.

    Article  CAS  PubMed  Google Scholar 

  15. Brown E.J., Baltimore D. 2003. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev. 17, 615–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Q., Guntuku S., Cui X.S., Matsuoka S., Cortez D., Tamai K., Luo G., Carattini-Rivera S., DeMayo F., Bradley A., Donehower L.A., and Elledge S.J. 2000. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev. 14, 1448–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou B.B., Elledge S.J. 2000. The DNA damage response: Putting checkpoints in perspective. Nature. 408, 433–439.

    Article  CAS  PubMed  Google Scholar 

  18. Hiom K. 2005. DNA repair: How to PIKK a partner. Curr. Biol. 15. 473–475.

    Article  CAS  Google Scholar 

  19. Belousova Yu.B. (2005) Eticheskaya ekspertiza biomedi-tsinskikh issledovanii: prakticheskie rekomendatsii (Ethical Expert Evaluation of Biomedical Research: Practical Recommendations). Moscow: Oki.

  20. Jais A., Einwallner E., Sharif O., Gossens K., Lu T.T., Soyal S.M., Medgyesi D., Neureiter D., Paier-Pourani J., Dalgaard K., Duvigneau J.C., Lindroos-Christensen J., Zapf T.C., Amann S., Saluzzo S., et al. 2014. Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell. 158, 25–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jou J., Choi S., Diehl A. 2008. Mechanisms of disease progression in nonalcoholic fatty liver disease. Semin. Liver Dis. 28, 370–379.

    Article  CAS  PubMed  Google Scholar 

  22. Yao P., Li K., Song F., Zhou S., Sun X., Zhang X., Nussler A.K., Liu L. 2007. Heme oxygenase-1 upregulated by Ginkgo biloba extract: Potential protection against ethanol-induced oxidative liver damage. Food Chem. Toxicol. 45, 1333–1342.

    Article  CAS  PubMed  Google Scholar 

  23. Randle L.E., Goldring C.E., Benson C.A., Metcalfe P.N., Kitteringham N.R., Park B.K., Williams D.P. 2008. Investigation of the effect of a panel of model hepatotoxins on the Nrf2-Keap1 defence response pathway in CD-1 mice. Toxicology. 243, 249–260.

    Article  CAS  PubMed  Google Scholar 

  24. Conde de la Rosa L., Vrenken T.E., Hannivoort R.A., Buist-Homan M., Havinga R., Slebos D.J., Kauffman H.F., Faber K.N., Jansen P.L., Moshage H. 2008. Carbon monoxide blocks oxidative stress-induced hepatocyte apoptosis via inhibition of the p54 JNK isoform. Free Radic. Biol. Med. 44, 1323–1333.

    Article  CAS  PubMed  Google Scholar 

  25. Beck H., Nähse V., Larsen M.S., Groth P., Clancy T., Lees M., Jørgensen M., Helleday T., Syljuåsen R.G., Sørensen C.S. 2010. Regulators of cyclin dependent kinases are crucial for maintaining genome integrity in S phase. J. Cell Biol. 188, 629–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cerqueira A., Santamaría D., Martínez-Pastor B., Cuadrado M., Fernández-Capetillo O., Barbacid M. 2009. Overall Cdk activity modulates the DNA damage response in mammalian cells. J. Cell Biol. 187, 773–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zaridze D.G. (2004) Kantserogenez (Carcinogenesis). Moscow: Meditsina.

    Google Scholar 

  28. Brown E.J., Baltimore D. 2003. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev. 17, 615–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morgan D. 2007. The Cell Cycle: Principles of Control. London: New Science Press.

    Google Scholar 

  30. Reinhardt H.C., Yaffe M.B. 2009. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr. Opin. Cell Biol. 21, 245–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chandler J.M., Cohen G.M., MacFarlane M. 1998. Different subcellular distribution of caspase-3 and caspase-7 following Fas-induced apoptosis in mouse liver. J. Biol. Chem. 273, 10815–10818.

    Article  CAS  PubMed  Google Scholar 

  32. Li F., Huang Q., Chen J., Peng, Y., Roop D.R., Bedford J.S., Li C.Y. 2010. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci. Signal. 3, ra13.

    PubMed  PubMed Central  Google Scholar 

  33. Kropotov A.V., Chelomin V.P., Slobodskova V.V., Solodova E.E., Mikhailov A.O. 2013. Evaluation of genotoxicity of tetrachloromethane and protective action of silibinin and haurantin on the rat liver using the comet assay. Tikhookean. Med. Zh. 2, 63–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Mukhammadiyeva.

Additional information

Translated by A. Levina

Abbreviations: CCl4, carbon tetrachloride; СО, carbon monoxide; ATM (Ataxia-Telangiectasia Mutated) and ATR (ATM Related), serine/threonine protein kinases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhammadiyeva, G.F., Karimov, D.O., Kutlina, T.G. et al. Expression of Cell Cycle, Oxidative Stress, and Apoptosis Related Genes Chek1, Hmox1, Casp7 in Rat Liver Exposed to Carbon Tetrachloride. Mol Biol 53, 64–69 (2019). https://doi.org/10.1134/S0026893319010102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319010102

Keywords:

Navigation