Skip to main content
Log in

Lead chloride affects sperm motility and acrosome reaction in mice

Lead affects mice sperm motility and acrosome reaction

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Lead is highly toxic and persistent in the environment and, thus, a major concern for public health. In this study, the effects of lead chloride (PbCl2) on mouse epididymal sperm were evaluated. Male mice were subcutaneously injected with 74 and 100 mg PbCl2/kg body weight for four consecutive days. Sperm was collected from the epididymis and several parameters of sperm function, such as sperm density, motility, viability, mitochondrial function, acrosome integrity and morphology, were evaluated. Furthermore, DNA fragmentation was assessed by the terminal deoxylnucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end labelling (TUNEL) assay and chromatin integrity was evaluated by sperm chromatin structure assay (SCSA). In order to assess direct effects on existing sperm population, we sacrificed one group for each condition at day 5. The effects of lead upon one entire spermatogenic cycle were evaluated on day 35. Both lead concentrations used in this work affected sperm motility, although no significant differences were observed in sperm viability, mitochondrial function and DNA/chromatin integrity. However, a decrease in the percentage of intact acrosomes was also observed, mirroring a lead-induced premature acrosome reaction. Thus, the results obtained indicate that, together with impaired motility, the effect of lead toxicity on acrosome integrity, leading to premature reaction, may compromise the ability of sperm to fertilize the oocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AO:

Acridine orange

BSA:

Bovine serum albumin

bw:

Body weight

DFI:

DNA fragmentation index

DMSO:

Dimethyl sulphoxide

EDTA:

Ethylenediaminetetraacetic acid

FCM:

Flow cytometry

FITC:

Fluorescein isothiocyanate

FS:

Forward scatter

HEPES:

4-(2-Hydroxyethyl)piperazine-1-ethanesulphonic acid

i.p.:

Intraperitoneal

MT6:

Modified Tyrode’s medium

PBS:

Phosphate-buffered saline

PI:

Propidium iodide

Rh123:

Rhodamine 123

ROS:

Reactive oxygen species

s.c.:

Subcutaneous

SCSA:

Sperm chromatin structure assay

SS:

Side scatter

TUNEL:

Terminal deoxylnucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end labelling

References

  • Acharya S, Acharya UR. In vivo lipid peroxidation responses of tissues in lead-treated Swiss mice. Ind Health 1997;35:542–4.

    Article  PubMed  CAS  Google Scholar 

  • Acharya UR, Rathmore RM, Mishra M. Role of vitamin C on lead acetate induced spermatogenesis in Swiss mice. Environ Toxicol Pharmacol 2003;13:9–14.

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for lead. Atlanta: U.S. Department of Health and Human Services; 1999.

    Google Scholar 

  • Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod 1989;41:183–97.

    Article  PubMed  CAS  Google Scholar 

  • Alexander BH, Checkoway H, van Netten C, Muller CH, Ewers TG, Kaufman JD, Mueller BA, Vaughan TL, Faustman EM. Semen quality of men employed at a lead smelter. Occup Environ Med. 1996;53:411–416.

    Article  PubMed  CAS  Google Scholar 

  • Apostoli P, Kiss P, Porru S, Bonde JP, Vanhoorne M. Male reproductive toxicity of lead in animals and humans. ASCLEPIOS Study Group. Occup Environ Med 1998;55:364–74.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JS, Rajasekaran M, Chamulitrat W, Gatti P, Hellstrom WJ, Sikka SC. Characterization of reactive oxygen species induced effects on human spermatozoa movement and energy metabolism. Free Radic Biol Med 1999;26:869–80.

    Article  PubMed  CAS  Google Scholar 

  • Banks S, King SA, Irvine DS, Saunders PT. Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction 2005;29:505–14.

    Article  CAS  Google Scholar 

  • Basaran N, Undeger U. Effects of lead on immune parameters in occupationally exposed workers. Am J Ind Med 2000;38:349–54.

    Article  PubMed  CAS  Google Scholar 

  • Baumber J, Ball BA, Gravance CG, Medina V, Davies-Morel MC. The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. J Androl 2000;21:895–902.

    PubMed  CAS  Google Scholar 

  • Benoff S, Hurley IR, Millan C, Napolitano B, Centola GM. Seminal lead concentrations negatively affect outcomes of artificial insemination. Fertil Steril 2003;80:517–25.

    Article  PubMed  Google Scholar 

  • Bonde JP, Joffe M, Apostoli P, Dale A, Kiss P, Spanò M, Caruso F, Giwercman A, Bisanti L, Porru S, Vanhoorne M, Comhaire F, Zschiesche W. Sperm count and chromatin structure in men exposed to inorganic lead: lowest adverse effect levels. Occup Environ Med 2002;59:234–42.

    Article  PubMed  CAS  Google Scholar 

  • Bungum M, Humaidan P, Axmon A, Spanò M, Bungum L, Erenpreiss J, Giwercman A. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod 2007;22:174–9.

    Article  PubMed  CAS  Google Scholar 

  • de Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. J Androl 1992;13:368–78.

    PubMed  Google Scholar 

  • Ekong EB, Jaar BG, Weaver VM. Lead-related nephrotoxicity: a review of the epidemiologic evidence. Kidney Int 2006;70:2074–84.

    PubMed  CAS  Google Scholar 

  • Evenson D, Jost L. Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci 2000;22:169–89.

    Article  PubMed  CAS  Google Scholar 

  • Fraser LR. Mouse sperm capacitation in vitro involves loss of a surface-associated inhibitory component. J Reprod Fert 1984;72:373–84.

    CAS  Google Scholar 

  • Fuentes-Mascorro G, Serrano H, Rosado A. Sperm chromatin. Arch Androl 2000;45:215–25.

    Article  PubMed  CAS  Google Scholar 

  • Garner DL, Thomas CA, Joerg HW, DeJarnette JM, Marshall CE. Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol Reprod 1997;57:1401–6.

    Article  PubMed  CAS  Google Scholar 

  • Graça A, Ramalho-Santos J, Pereira ML. Effect of lead chloride on spermatogenesis and sperm parameters in mice. Asian J Androl 2004;6:237–41.

    PubMed  Google Scholar 

  • Gurer-Orhan H, Sabir HU, Ozgunes H. Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers. Toxicology 2004;195:147–54.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Ochoa I, Garcia-Vargas G, Lopez-Carrillo L, Rubio-Andrade M, Moran-Martinez J, Cebrian ME, Quintanilla-Vega B. Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico. Reprod Toxicol 2005;20:221–8.

    PubMed  CAS  Google Scholar 

  • Hernandez-Ochoa I, Sanchez-Gutierrez M, Solis-Heredia MJ, Quintanilla-Vega B. Spermatozoa nucleus takes up lead during the epididymal maturation altering chromatin condensation. Reprod Toxicol 2006;21:171–8.

    Article  PubMed  CAS  Google Scholar 

  • Hsu PC, Hsu CC, Liu MY, Chen LY, Guo YL. Lead-induced changes in spermatozoa function and metabolism. J Toxicol Environ Health A 1998;55:45–64.

    Article  PubMed  CAS  Google Scholar 

  • Hsu PC, Liu MY, Hsu CC, Chen LY, Guo YL. Lead exposure causes generation of reactive oxygen species and functional impairment in rat sperm. Toxicology 1997;122:133–43.

    Article  PubMed  CAS  Google Scholar 

  • Johansson L, Pellicciari CE. Lead-induced changes in the stabilization of mouse sperm chromatin. Toxicology 1988;51:11–24.

    Article  PubMed  CAS  Google Scholar 

  • Johansson L. Premature acrosome reaction in spermatozoa from lead-exposed mice. Toxicology 1989;54:151–62.

    Article  PubMed  CAS  Google Scholar 

  • Kanous KS, Casey C, Lindemann CB. Inhibition of microtubule sliding by Ni2+ and Cd2+: evidence for a differential response of certain microtubule pairs within the bovine sperm axoneme. Cell Motil Cytoskeleton 1993;26:66–76.

    Article  PubMed  CAS  Google Scholar 

  • Kvist U, Björndahl L, editors. In: Manual on basic semen analysis. ESHRE Monographs 2. Oxford: Oxford University Press; 2002.

  • Lindemann C, Gardner TK, Westbrook E, Kanous KS. The calcium-induced curvature reversal of rat sperm is potentiated by camp and inhibited by anti-calmodulin. Cell Motil Cytoskelet 1991;20:316–24.

    Article  CAS  Google Scholar 

  • Lu Q, Shur BD. Sperm from b1,4-galactosyltransferase-null mice are refractory to ZP3-induced acrosome reactions and penetrate the zona pellucida poorly. Development 1997;124:4121–31.

    PubMed  CAS  Google Scholar 

  • Marchlewicz M, Protasowicki M, Rózewicka L, Piasecka M, Laszczyńska M. Effect of long-term exposure to lead on testis and epididymis in rats. Folia Histochem Cytobiol 1993;31:55–62.

    PubMed  CAS  Google Scholar 

  • Mishra M, Acharya UR. Protective action of vitamins on the spermatogenesis in lead-treated Swiss mice. J Trace Elem Med Biol 2004;18:173–8.

    Article  PubMed  CAS  Google Scholar 

  • Moorman WJ, Skaggs SR, Clark JC, Turner TW, Sharpnack DD, Murrell JA, Simon SD, Chapin RE, Schrader SM. Male reproductive effects of lead, including species extrapolation for the rabbit model. Reprod Toxicol 1998;12:333–46.

    Article  PubMed  CAS  Google Scholar 

  • Muratori M, Piomboni P, Baldi E, Filimberti E, Pecchioli P, Moretti E, Gambera L, Baccetti B, Biagiotti R, Forti G, Maggi M. Functional and ultrastructural features of DNA-fragmented human sperm. J Androl 2000;21:903–12.

    PubMed  CAS  Google Scholar 

  • Murthy RC, Gupta SK, Saxena DK. Nuclear alterations during acrosomal cap formation in spermatids of lead-treated rats. Reprod Toxicol 1995;9:483–9.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira H, Loureiro J, Filipe L, Santos C, Ramalho-Santos J, Sousa M, Pereira ML. Flow cytometry evaluation of lead and cadmium effects on mouse spermatogenesis. Reprod Toxicol 2006;22:529–35.

    Article  PubMed  CAS  Google Scholar 

  • Papaioannou KZ, Murphy RP, Monks RS, Hynes N, Ryan MP, Boland MP, Roche JF. Assessment of viability and mitochondrial function of equine spermatozoa using double staining and flow cytometry. Theriogenology 1997;48:299–312.

    Article  PubMed  CAS  Google Scholar 

  • Perreault SD, Aitken RJ, Baker HW, Evenson DP, Huszar G, Irvine DS, Morris ID, Morris RA, Robbins WA, Sakkas D, Spano M, Wyrobek AJ. Integrating new tests of sperm genetic integrity into semen analysis: breakout group discussion. Adv Exp Med Biol 2003;518:253–68.

    PubMed  Google Scholar 

  • Pinon-Lataillade G, Thoreux-Manlay A, Coffigny H, Monchaux G, Masse R, Soufir JC. Effect of ingestion and inhalation of lead on the reproductive system and fertility of adult male rats and their progeny. Hum Exp Toxicol 1993;12:165–72.

    Article  PubMed  CAS  Google Scholar 

  • Pinon-Lataillade G, Thoreux-Manlay A, Coffigny H, Masse R, Soufir JC. Reproductive toxicity of chronic lead exposure in male and female mice. Hum Exp Toxicol 1995;14:872–8.

    Article  PubMed  CAS  Google Scholar 

  • Quintanilla-Vega B, Hoover DJ, Bal W, Silbergeld EK, Waalkes MP, Anderson LD. Lead interaction with human protamine (HP2) as a mechanism of male reproductive toxicity. Chem Res Toxicol 2000;13:594–600.

    Article  PubMed  CAS  Google Scholar 

  • Sailer BL, Jost LK, Evenson DP. Mammalian sperm DNA susceptibility to in situ denaturation associated with the presence of DNA strand breaks as measured by the terminal deoxynucleotidyl transferase assay. J Androl 1995;16:80–7.

    PubMed  CAS  Google Scholar 

  • Sallmén M. Exposure to lead and male fertility. Int J Occup Med Environ Health. 2001;14:219–222.

    PubMed  Google Scholar 

  • Sanocka D, Kurpisz M. Reactive oxygen species and sperm cells. Reprod Biol Endocrinol 2004;2:12.

    Article  PubMed  Google Scholar 

  • Shiau CY, Wang JD, Chen PC. Decreased fecundity among male lead workers. Occup Environ Med 2004;61:915–23.

    Article  PubMed  Google Scholar 

  • Silbergeld EK. Toward the twenty-first century: lessons from lead and lessons yet to learn. Environ Health Perspect 1990;86:191–6.

    Article  PubMed  CAS  Google Scholar 

  • Sokol RZ, Berman N. The effect of age exposure on lead induced testicular toxicity. Toxicology 1991;69:269–78.

    Article  PubMed  CAS  Google Scholar 

  • Sokol RZ, Wang S, Wan YJ, Stanczyk FZ, Gentzschein E, Chapin RE. Long-term, low-dose lead exposure alters the gonadotropin-releasing hormone system in the male rat. Environ Health Perspect 2002;110:871–4.

    PubMed  CAS  Google Scholar 

  • Spanò M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril 2000;73:43–50.

    Article  PubMed  Google Scholar 

  • Stahl O, Eberhard J, Jepson K, Spano M, Cwikiel M, Cavallin-Stahl E, Giwercman A. Sperm DNA integrity in testicular cancer patients. Hum Reprod 2006;21:3199–205.

    Article  PubMed  CAS  Google Scholar 

  • Telisman S, Cvitković P, Jurasović J, Pizent A, Gavella M, Rocić B. Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men. Environ Health Perspect. 2000;108:45–53.

    Article  PubMed  CAS  Google Scholar 

  • Thoreux-Manlay A, Velez de la Calle JF, Olivier MF, Soufir JC, Masse R, Pinon-Lataillade G. Impairment of testicular endocrine function after lead intoxication in the adult rat. Toxicology 1995;100:101–9.

    Article  PubMed  CAS  Google Scholar 

  • Traina ME, Guarino M, Urbani E, Saso L, Eleuteri P, Cordelli E, Rescia M, Leter G, Spanò M. Lonidamine transiently affects spermatogenesis in pubertal CD1 mice. Contraception 2005;72:262–7.

    Article  PubMed  CAS  Google Scholar 

  • Wadi SA, Ahmad G. Effects of lead on the male reproductive system in mice. J Toxicol Environ Health A 1999;56:513–21.

    Article  PubMed  CAS  Google Scholar 

  • Wathes DC, Abayasekara DR, Aitken RJ. Polyunsaturated fatty acids in male and female reproduction. Biol Reprod 2007;77:190–201.

    Article  PubMed  CAS  Google Scholar 

  • Wyrobek AJ, Bruce WR. Chemical induction of sperm abnormalities in mice. Proc Natl Acad Sci USA 1975;72:4425–9.

    Article  PubMed  CAS  Google Scholar 

  • Zeng H, Tulsiani DRP. Calmodulin antagonists differentially affect capacitation-associated protein tyrosine phosphorylation of mouse sperm components. J Cell Sci 2003;116:1981–9.

    Article  PubMed  CAS  Google Scholar 

  • Zhou T, Jia X, Chapin RE, Maronpot RR, Harris MW, Liu J, Waalkes MP, Eddy EM. Cadmium at a non-toxic dose alters gene expression in mouse testes. Toxicol Lett 2004;154:191–200.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank to Dr. Susana Santos (Sir James Black Centre, University of Dundee) for revising the language of this manuscript. This work was supported by the Research Institute of the University of Aveiro (project CTS/22) and CICECO. Helena Oliveira was supported by two fellowships [Research Institute of the University of Aveiro (Project CTS/22) and Ph.D. fellowship by University of Aveiro].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, H., Spanò, M., Santos, C. et al. Lead chloride affects sperm motility and acrosome reaction in mice. Cell Biol Toxicol 25, 341–353 (2009). https://doi.org/10.1007/s10565-008-9088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-008-9088-4

Keywords

Navigation