Skip to main content
Log in

Molecular analysis of physiological responses to changes in nitrogen in a marine macroalga, Porphyra yezoensis (Rhodophyta)

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The rhodophyte seaweed Porphyra yezoensis, known more commonly world-wide as “nori”, is an important commercial crop in Japan. Cultivation of nori in Japan is often affected by outbreaks of “iroochi”, a discoloration of the thalli due to a decrease in inorganic nutrients in the culture area that in turn decreases the amount of photosynthetic pigments in the thalli. Treating thalli with inorganic nitrogen can reverse iroochi. In this paper, we report on the characterization of three P. yezoensis genes, a nitrate transporter (PyNRT2) and two urea transporters (PyUT1 and PyUT2), which may be involved in reversing iroochi. The predicted length of the PyNRT2 protein was 479 amino acids (AA), while PyUT1 and PyUT2 were 740 and 680 AA, respectively. PyNRT2 was more similar to NRT2 from a chromophyte than to NRTs from Chlamydomonas and higher plants. The two P. yezoensis UTs had 56% AA identity to each other, and showed the closest relationship to higher plant and yeast DUR3 proteins which formed a subfamily of the sodium-solute symporter protein family. Hydrophobicity plots of the AA sequences showed that the PyNRT2, PyUT1, and PyUT2 included 12, 15, and 16 transmembrane domains, respectively. Southern blot analysis indicated that the P. yezoensis genome has a single NRT2-encoding gene and at least four UT-encoding genes. Expression analysis of PyNRT2 and PyUT genes showed that the messenger RNA level of the PyNRT2 gene reached a maximum after 48 h in the nitrate starvation condition and was then restored to the constitutive level, while expression of the PyUT genes was induced in proportion to treatment times in the nitrate starvation condition. These results suggest that the PyNRT2 and PyUT are responsible for the high-affinity nitrate/urea transport systems that operate under low external nitrate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

amino acid(s)

DIN:

dissolved inorganic nitrogen

EST:

expressed sequence tag

NNP:

nitrate-nitrite porter

NRT:

nitrate transporter

nt:

nucleotide(s)

ORF:

open reading frame

PCR:

polymerase chain reaction

PES:

Provasoli’s enriched seawater

RACE:

rapid amplification of cDNA ends

ss:

single-stranded

SSS:

sodium-solute symporter

TM:

transmembrane domain

UT:

urea transporter

References

  • Amano H, Noda H. Effect of nitrogenous fertilization on the recovery of discoloured fronds of Porphyra yezoensis. Bot Mar 1987;30:467–73.

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–10.

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–402.

    Article  PubMed  CAS  Google Scholar 

  • Arai M, Mitsuke H, Ikeda M, Xia JX, Kikuchi T, Satake M, Shimizu T. ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res 2004;32:W390–3.

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM, Glass ADM. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 1998;3:389–95.

    Article  Google Scholar 

  • ElBerry HM, Majumdar ML, Cunningham TS, Sumrada RA, Cooper TG. Regulation of the urea active transporter gene (DUR3) in Saccharomyces cerevisiae. J Bacteriol 1993;175:4688–98.

    PubMed  CAS  Google Scholar 

  • Filleur S, Daniel-Vedele F. Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display. Planta 1999;207:461–9.

    Article  PubMed  CAS  Google Scholar 

  • Forde BG. Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 2000;1465:219–35.

    Article  PubMed  CAS  Google Scholar 

  • Galván A, Fernández E. Eukaryotic nitrate and nitrite transporters. Cell Mol Life Sci 2001;58:225–33.

    Article  PubMed  Google Scholar 

  • Hildebrand M, Dahlin K. Nitrate transporter genes from the diatom Cylindrotheca fusiformis (Bacillariophyceae): mRNA levels controlled by nitrogen source and by the cell cycle. J Phycol 2000;36:702–13.

    Article  CAS  Google Scholar 

  • Ito K, Sato S, Sato Y, Matsumoto F. Biochemical studies on the edible seaweed, Porphyra tenera-II. On the utilization of various nitrogenous compounds. Bull Japan Soc Sci Fish 1960;26:938–43.

    CAS  Google Scholar 

  • Iwasaki H, Matsudaira C. Studies on cultural grounds of a laver, Porphyra tenera Kjellman in Matsulawa-ura intel-I. Environmental characteristics effecting upon nitrogen and phosphorus contents of laver. Bull Japan Soc Sci Fish 1954;20:112–9.

    CAS  Google Scholar 

  • Jung H. The sodium/substrate symporter family: structural and functional features. FEBS Lett 2002;529:73–7.

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Bohner A, von Wirén N. Molecular mechanisms of urea transport in plants. J Membrane Biol 2006;212:83–91.

    Article  CAS  Google Scholar 

  • Lejay L, Tillard P, Lepetit M, Olive FD, Filleur S, Daniel-Vedele F, Gojon A. Molecular and functional regulation of two \({\text{NO}}_3^ - \) uptake systems by N- and C-status of Arabidopsis plants. Plant J 1999;18:509–19.

    Article  PubMed  CAS  Google Scholar 

  • Lejay L, Gansel X, Cerezo M, Tillard P, Müller C, Krapp A, von Wirén N, Daniel-Vedele F, Gojon A. Regulation of root ion transporters by photosynthesis: functional importance and relation with Hexokinase. Plant Cell 2003;15:2218–32.

    Article  PubMed  CAS  Google Scholar 

  • Liu LH, Ludewig U, Frommer WB, von Wirén N. AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis. Plant Cell 2003;15:790–800.

    Article  PubMed  CAS  Google Scholar 

  • Nozawa K. Nutrient uptake and fertilizing of Porphyra. Aquaculture 1959;7:1–12 (in Japanese).

    Google Scholar 

  • Okamoto M, Vidmar JJ, Glass ADM. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: response to nitrate provision. Plant Cell Physiol 2003;44:304–17.

    Article  PubMed  CAS  Google Scholar 

  • Orsel M, Filleur S, Fraisier V, Daniel-Vedel F. Nitrate transport in plants: which gene and which control? J Exp Bot 2002;53:825–33.

    Article  PubMed  CAS  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH. Major facilitator superfamily. Microbiol Mol Biol Rev 1998;62:1–34.

    PubMed  CAS  Google Scholar 

  • Provasoli L. Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A, editors. Culture and collection of algae: Proceedings of US-Japan conference in Hakone. Tokyo: Japanese Society of Plant Physiologists; 1968. p. 63–75.

    Google Scholar 

  • Quesada A, Fernández E. Expression of nitrate assimilation related genes in Chlamydomonas reinhardtii. Plant Mol Biol 1994;24:185–94.

    Article  PubMed  CAS  Google Scholar 

  • Quesada A, Galván A, Fernández E. Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant J 1994;5:407–19.

    Article  PubMed  CAS  Google Scholar 

  • Quesada A, Hidalgo J, Fernández E. Three Ntr2 genes are differentially regulated in Chlamydomonas reinhardtii. Mol Gen Genet 1998;258:373–7.

    Article  PubMed  CAS  Google Scholar 

  • Ranamalie Amarasinghe BHR, de Bruxelles GL, Braddon M, Onyeocha I, Forde BG, Udvardi MK. Regulation of GmNRT2 expression and nitrate transport activity in roots of soybean (Glycine max). Planta 1998;206:44–52.

    Article  Google Scholar 

  • Sakaguchi K, Ochiai N, Park CS, Kakinuma M, Amano H. Evaluation of discoloration in harvested laver Porphyra yezoensis and recovery after treatment with ammonium sulfate enriched seawater. Nippon Suisan Gakkaishi 2003;69:399–404 (in Japanese).

    Google Scholar 

  • Sano T. Studies on the colour changes of cultured lavers. I. On the change of hydrochrome. Bull Tohoku Reg Fish Res Lab 1955;4:243–61 (in Japanese).

    Google Scholar 

  • Tamura S, Seki T, Sato M, Aoki K. Experimental fertilizing of Porphyra culturing area. Rep Chiba Pref Fish Exp St Tokyo Bay 1963;5:37–53 (in Japanese).

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–80.

    Article  PubMed  CAS  Google Scholar 

  • Trueman LJ, Onyeocha I, Forde BG. Recent advances in the molecular biology of a family of eukaryotic high affinity nitrate transporters. Plant Physiol Biochem 1996;34:621–7.

    CAS  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK. Nitrate transporters and peptide transporters. FEBS Lett 2007;581:2290–300.

    Article  PubMed  CAS  Google Scholar 

  • Zemke-White WL, Ohno M. World seaweed utilization: an end-of-century summary. J Appl Phycol 1999;11:369–76.

    Article  Google Scholar 

  • Zhuo DG, Okamoto M, Vidmar JJ, Glass ADM. Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. Plant J 1999;17:563–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Institute of Fisheries Science, Fisheries Research Agency, Japan, and was funded in part by Grant-in-Aids from the Fisheries Agency, Government of Japan and the Japan Society for the Promotion of Science. We thank Dr. M. Iwabuchi and Dr. T. Fukunaga of the Fukuoka Fisheries and Marine Technology Research Center, Japan, for supplying P. yezoensis strain FA-89 and for help with its culture. We also thank Dr. M. Kobayashi and M. Yoshikawa of National Research Institute of Fisheries Science, Japan, for help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kakinuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakinuma, M., Coury, D.A., Nakamoto, C. et al. Molecular analysis of physiological responses to changes in nitrogen in a marine macroalga, Porphyra yezoensis (Rhodophyta). Cell Biol Toxicol 24, 629–639 (2008). https://doi.org/10.1007/s10565-007-9053-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-007-9053-7

Keywords

Navigation