Skip to main content

Advertisement

Log in

Role of undecan-2-one on ethanol-induced apoptosis in HepG2 cells

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Based on the reduced expression of ethanol-oxidizing enzymes in human hepatocellular carcinoma (HepG2) cells, we analyzed the role of nonoxidative metabolites in ethanol-induced apoptosis in HepG2 cells. For this purpose, an analysis of volatile metabolites of ethanol using ion-mobility spectrometry and gas chromatography–mass spectrometry was performed. HepG2 cells exposed to 1 mmol/L ethanol exhibited significant synthesis of undecan-2-one compared to untreated cells. Undecan-2-one is a fatty acid ethyl ester metabolite synthesized through a nonoxidative pathway. Undecan-2-one had a dose-dependent cytotoxic effect on HepG2 cells as shown by release of lactate dehydrogenase (LDH). The most notable finding of this study was the potentiation of ethanol-induced apoptosis demonstrated by an increased apoptotic rate induced by undecan-2-one in ethanol-treated HepG2 cells. The data presented in this study contribute to the better understanding of the molecular mechanisms of ethanol exposure at low concentration in HepG2 cells, a human hepatocellular carcinoma-derived cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADH:

alcohol dehydrogenase

anti-BrdU-POD:

peroxidase-conjugated anti-BrdU antibody

BrdU:

5-bromo-2′-deoxyuridine

CW/DVB:

carbowax/divinylbenzene

CYP2E1:

cytochrome P4502E1

FAEE:

fatty acid ethyl esters

GC-MS:

gas chromatography–mass spectroscopy

IMS:

ion-mobility spectrometry

LDH:

lactate dehydrogenase

References

  • Aubry JP, Blaecke A, Lecoanet-Henchoz S, et al. Annexin V used for measuring apoptosis in the early events of cellular cytotoxicity. Cytometry 1999;37:197–204.

    Article  PubMed  CAS  Google Scholar 

  • Baumbach JI. Process analysis using ion mobility spectrometry. Anal Bioanal Chem 2006;384:1059–70.

    Article  PubMed  CAS  Google Scholar 

  • Baumbach JI, Eiceman GA. Ion mobility spectrometry: arriving on site and moving beyond a low profile. Appl Spectrosc 1999;53:338A–5A.

    Article  Google Scholar 

  • Beckemeier ME, Bora PS. Fatty acid ethyl esters: potentially toxic products of myocardial ethanol metabolism. J Mol Cell Cardiol 1998;30:2487–94.

    Article  PubMed  CAS  Google Scholar 

  • Berger A, Roberts MA, Hoff B. How dietary arachidonic- and docosahexaenoic-acid rich oils differentially affect the murine hepatic transcriptome. Lipids Health Dis 2006;5:10.

    Article  PubMed  Google Scholar 

  • Calabrese V, Calderone A, Ragusa N, et al. Effects of metadoxine on cellular formation of fatty acid ethyl esters in ethanol treated rats. Int J Tissue React 1995;17:101–8.

    PubMed  CAS  Google Scholar 

  • Castaneda F, Kinne RK. Cytotoxicity of millimolar concentrations of ethanol on HepG2 human tumor cell line compared to normal rat hepatocytes in vitro. J Cancer Res Clin Oncol 2000;126:503–10.

    Article  PubMed  CAS  Google Scholar 

  • Castaneda F, Kinne RKH. Ethanol treatment of hepatocellular carcinoma: high potentials of low concentrations. Cancer Biol Ther 2004;3:430–3.

    PubMed  CAS  Google Scholar 

  • Castaneda F, Rosin-Steiner S. Low concentration of ethanol induce apoptosis in HepG2 cells: role of various signal transduction pathways. Int J Med Sci 2006;3:160–7.

    PubMed  Google Scholar 

  • Cederbaum AI. Introduction—serial review: alcohol, oxidative stress and cell injury. Free Radic Biol Med 2001;31:1524–6.

    Article  PubMed  CAS  Google Scholar 

  • Criddle DN, Raraty MG, Neoptolemos JP, et al. Ethanol toxicity in pancreatic acinar cells: mediation by nonoxidative fatty acid metabolites. Proc Natl Acad Sci USA 2004;101:10738–43.

    Article  PubMed  CAS  Google Scholar 

  • Criddle DN, Sutton R, Petersen OH. Role of Ca in pancreatic cell death induced by alcohol metabolites. J Gastroenterol Hepatol 2006;21 Suppl 3:S14–7.

    Article  PubMed  CAS  Google Scholar 

  • Dan L, Cluette-Brown JE, Kabakibi A, et al. Quantitation of the mass of fatty acid ethyl esters synthesized by Hep G2 cells incubated with ethanol. Alcohol Clin Exp Res 1998;22:1125–31.

    PubMed  CAS  Google Scholar 

  • Donohue TM Jr, Clemens DL, Galli A, et al. Use of cultured cells in assessing ethanol toxicity and ethanol-related metabolism. Alcohol Clin Exp Res 2001;25:87S–93S.

    PubMed  CAS  Google Scholar 

  • Donohue TM, Osna NA, Clemens DL. Recombinant Hep G2 cells that express alcohol dehydrogenase and cytochrome P450 2E1 as a model of ethanol-elicited cytotoxicity. Int J Biochem Cell Biol 2006;38:92–101.

    Article  PubMed  CAS  Google Scholar 

  • Doyle KM, Bird DA, al-Salihi S, et al. Fatty acid ethyl esters are present in human serum after ethanol ingestion. J Lipid Res 1994;35:428–37.

    PubMed  CAS  Google Scholar 

  • Duplus E, Glorian M, Forest C. Fatty acid regulation of gene transcription. J Biol Chem 2000;275:30749–52.

    Article  PubMed  CAS  Google Scholar 

  • Gorski NP, Nouraldin H, Dube DM, et al. Reduced fatty acid ethyl ester synthase activity in the white blood cells of alcoholics. Alcohol Clin Exp Res 1996;20:268–74.

    Article  PubMed  CAS  Google Scholar 

  • Gubitosi-Klug RA, Gross RW. Fatty acid ethyl esters, nonoxidative metabolites of ethanol, accelerate the kinetics of activation of the human brain delayed rectifier K+ channel, Kv1.1. J Biol Chem 1996;271:32519–22.

    Article  PubMed  CAS  Google Scholar 

  • Gukovskaya AS, Mouria M, Gukovsky I, et al. Ethanol metabolism and transcription factor activation in pancreatic acinar cells in rats. Gastroenterology 2002;122:106–18.

    Article  PubMed  CAS  Google Scholar 

  • Harris AJ, Dial SL, Casciano DA. Comparison of basal gene expression profiles and effects of hepatocarcinogens on gene expression in cultured primary human hepatocytes and HepG2 cells. Mutat Res 2004;549:79–99.

    PubMed  CAS  Google Scholar 

  • Idziorek T, Estaquier J, De Bels F, et al. YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. J Immunol Methods 1995;185:249–58.

    Article  PubMed  CAS  Google Scholar 

  • Kabakibi A, Morse CR, Laposata M. Fatty acid ethyl esters and HepG2 cells: intracellular synthesis and release from the cells. J Lipid Res 1998;39:1568–82.

    PubMed  CAS  Google Scholar 

  • Kaphalia BS, Green SM, Ansari GA. Fatty acid ethyl and methyl ester synthases, and fatty acid anilide synthase in HepG2 and AR42J cells: interrelationships and inhibition by tri-o-tolyl phosphate. Toxicol Appl Pharmacol 1999;159:134–41.

    Article  PubMed  CAS  Google Scholar 

  • Kubinova R, Machala M, Minksova K, et al. Chemoprotective activity of boldine: modulation of drug-metabolizing enzymes. Pharmazie 2001;56:242–3.

    PubMed  CAS  Google Scholar 

  • Laposata M. Fatty acid ethyl esters: nonoxidative ethanol metabolites with emerging biological and clinical significance. Lipids 1999;34 Suppl:S281–5.

    Article  PubMed  CAS  Google Scholar 

  • Laposata EA, Lange LG. Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science 1986;231:497–9.

    Article  PubMed  CAS  Google Scholar 

  • Lieber CS. Metabolism of alcohol. Clin Liver Dis 2005;9:1–35.

    Article  PubMed  Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci MC, et al. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 1991;139:271–9.

    Article  PubMed  CAS  Google Scholar 

  • Niemela O. Distribution of ethanol-induced protein adducts in vivo: relationship to tissue injury. Free Radic Biol Med 2001;31:1533–8.

    Article  PubMed  CAS  Google Scholar 

  • Skopinska-Rozewska E, Gibka J, Glinski M, et al. Immunotropic effects of undecan-2-one in mice. Cent Eur J Exp Immunol 2006;31:57–62.

    Google Scholar 

  • Soderberg BL, Salem RO, Best CA, et al. Fatty acid ethyl esters. Ethanol metabolites that reflect ethanol intake. Am J Clin Pathol 2003;119 Suppl:S94–9.

    PubMed  Google Scholar 

  • Speisky H, Cassels BK. Boldo and boldine: an emerging case of natural drug development. Pharmacol Res 1994;29:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Sun AY, Ingelman-Sundberg M, Neve E, et al. Ethanol and oxidative stress. Alcohol Clin Exp Res 2001;25:237S–43S.

    PubMed  CAS  Google Scholar 

  • Szczepiorkowski ZM, Dickersin GR, Laposata M. Fatty acid ethyl esters decrease human hepatoblastoma cell proliferation and protein synthesis. Gastroenterology 1995;108:515–22.

    Article  PubMed  CAS  Google Scholar 

  • Tuma DJ. Role of malondialdehyde–acetaldehyde adducts in liver injury. Free Radic Biol Med 2002;32:303–8.

    Article  PubMed  CAS  Google Scholar 

  • Tuma DJ, Casey CA. Dangerous byproducts of alcohol breakdown—focus on adducts. Alcohol Res Health 2003;27:285–90.

    PubMed  Google Scholar 

  • Vautz W, Baumbach JI, Uhde E. Detection of emissions from surfaces using ion mobility spectrometry. Anal Bioanal Chem 2006a;384:980–6.

    Article  PubMed  CAS  Google Scholar 

  • Vautz W, Zimmermann D, Hartmann M, et al. Ion mobility spectrometry for food quality and safety. Food Addit Contam 2006b;23:1064–73.

    Article  PubMed  CAS  Google Scholar 

  • Wilson JS, Apte MV. Role of alcohol metabolism in alcoholic pancreatitis. Pancreas 2003;27:311–5.

    Article  PubMed  CAS  Google Scholar 

  • Wu C-F, Bishopric NH, Pratt RE. Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem 1997;272:14860–6.

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Cai P, Clemens DL, et al. Metabolic basis of ethanol-induced cytotoxicity in recombinant HepG2 cells: role of nonoxidative metabolism. Toxicol Appl Pharmacol 2006;216:238–47.

    Article  PubMed  CAS  Google Scholar 

  • Zima T, Fialova L, Mestek O, et al. Oxidative stress, metabolism of ethanol and alcohol-related diseases. J Biomed Sci 2001;8:59–70.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann D, Hartmann M, Nolte J, et al. First detection of metabolites of the colon cancer cell line SW 480 using MCC/IMS and GC/MS. Int J Ion Mobil Spectrom 2005;8:1–4.

    Google Scholar 

  • Zimmermann D, Hartmann M, Moyer M, et al. Determination of volatile products of human colon cell line metabolism by GC/MS analysis. Metabolomics 2007; 3:13–17.

    Google Scholar 

Download references

Acknowledgments

The authors thank Rita Fobbe, Michelle Hartmann, Luzie Seifert and Sigrid Rosin-Steiner for their technical assistance. Financial support from the Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes Nordrhein-Westfalen, and the Bundesministerium für Bildung und Forschung is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Castaneda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castaneda, F., Zimmermann, D., Nolte, J. et al. Role of undecan-2-one on ethanol-induced apoptosis in HepG2 cells. Cell Biol Toxicol 23, 477–485 (2007). https://doi.org/10.1007/s10565-007-9009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-007-9009-y

Keywords

Navigation