Skip to main content
Log in

Molecular Design of Polyoxometalate-Based Compounds for Environmentally-Friendly Functional Group Transformations: From Molecular Catalysts to Heterogeneous Catalysts

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

This review article summarizes our recent researches for molecular design of polyoxometalates (POMs) and their related compounds for environmentally-friendly functional group transformations. The divacant POM [γ-SiW10O34(H2O)2]4− exhibits high catalytic performance for mono-oxygenation-type reactions including epoxidation of olefins and allylic alcohols, sulfoxidation, and hydroxylation of organosilanes with H2O2. We have successfully synthesized several POM-based molecular catalysts (metal-substituted POMs) with controlled active sites by the introduction of metal species into the divacant POM as a “structural motif”. These molecular catalysts can efficiently activate H2O2 (vanadium-substituted POM for epoxidation) and alkynes (copper-substituted POM for click reaction and oxidative homocoupling of alkynes). The aluminum-substituted POM exhibits Lewis acidic catalysis for diastereoselective cyclization of (+)-citronellal to (−)-isopulegol. In addition, we have developed POM-based “molecular heterogeneous catalysts” by the “solidification” and “immobilization” of catalytically active POMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hill CL, Chrisina C, Prosser-McCartha M (1995) Coord Chem Rev 143:407

    Article  CAS  Google Scholar 

  2. Neumann R (1998) Prog Inorg Chem 47:317

    Article  CAS  Google Scholar 

  3. Kozhevnikov IV (2002) Catalysts for fine chemical synthesis, vol 2, catalysis by polyoxometalates. Wiley, Chichester

    Google Scholar 

  4. Mizuno N, Yamaguchi K, Kamata K (2005) Coord Chem Rev 249:1944

    Article  CAS  Google Scholar 

  5. Mizuno N, Kamata K, Yamaguchi K (2006) In: Richards R (eds) Surface and nanomolecular catalysis. Taylor and Francis Group, New York, p 463

  6. Mizuno N, Kamata K, Uchida S, Yamaguchi K (2009) In: Mizuno N (ed) Modern heterogeneous oxidation catalysis–design, reactions and characterization. Wiley-VCH, Weinheim, p 185

  7. Wassermann K, Lunk H-J, Palm R, Fuchs J, Steinfeldt N, Stolsser R, Pope MT (1996) Inorg Chem 35:3273

    Article  CAS  Google Scholar 

  8. Zhang X, O’Connor CJ, Jameson GB, Pope MT (1996) Inorg Chem 35:30

    Article  CAS  Google Scholar 

  9. Cadot E, Béreau V, Marg B, Halut S, Sécheresse F (1996) Inorg Chem 35:3099

    Article  CAS  Google Scholar 

  10. Botar B, Geletii YV, Kögerler P, Musaev DG, Morokuma K, Weinstock IA, Hill CL (2006) J Am Chem Soc 128:11268

    Article  CAS  Google Scholar 

  11. Mialane P, Dolbecq A, Marrot J, Rivière E, Sécheresse F (2005) Chem Eur J 11:1771

    Article  CAS  Google Scholar 

  12. Kikukawa Y, Yamaguchi S, Tsuchida K, Nakagawa Y, Uehara K, Yamaguchi K, Mizuno N (2008) J Am Chem Soc 130:5472

    Article  CAS  Google Scholar 

  13. Xin F, Pope MT (1996) Inorg Chem 35:5693

    Article  CAS  Google Scholar 

  14. Mayer CR, Herson P, Thouvenot R (1999) Inorg Chem 38:6152

    Article  CAS  Google Scholar 

  15. Sartorel A, Carraro M, Scorrano G, De Zorzi R, Geremia S, McDaniel ND, Bernhard S, Bonchio M (2008) J Am Chem Soc 130:5006

    Article  CAS  Google Scholar 

  16. Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichi S, Mizuno N (2003) Science 300:964

    Article  CAS  Google Scholar 

  17. Kamata K, Nakagawa Y, Yamaguchi K, Mizuno N (2004) J Catal 224:224

    Article  CAS  Google Scholar 

  18. Kamata K, Kotani M, Yamaguchi K, Hikichi S, Mizuno N (2007) Chem Eur J 13:639

    Article  CAS  Google Scholar 

  19. Ishimoto R, Kamata K, Mizuno N (2009) Angew Chem Int Ed 48:8900

    Article  CAS  Google Scholar 

  20. Nakagawa Y, Kamata K, Kotani M, Yamaguchi K, Mizuno N (2005) Angew Chem Int Ed 44:5136

    Article  CAS  Google Scholar 

  21. Nakagawa Y, Mizuno N (2007) Inorg Chem 46:1727

    Article  CAS  Google Scholar 

  22. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed 41:2596

    Article  CAS  Google Scholar 

  23. Tornøe CW, Christensen C, Meldal M (2002) J Org Chem 67:3057

    Article  Google Scholar 

  24. Díez-González S, Correa A, Cavallo L, Nolan SP (2006) Chem Eur J 12:7558

    Article  Google Scholar 

  25. Candelon N, Lastécouères D, Diallo AK, Aranzaes JR, Astruc D, Vincent J-M (2008) Chem Commun 741

  26. Nolte C, Mayer P, Straub BF (2007) Angew Chem Int Ed 46:2101

    Article  CAS  Google Scholar 

  27. Rodionov VO, Fokin VV, Finn MG (2005) Angew Chem Int Ed 44:2210

    Article  CAS  Google Scholar 

  28. Ahlquist M, Fokin VV (2007) Organometallics 26:4389

    Article  CAS  Google Scholar 

  29. Straub BF (2007) Chem Commun 3868

  30. Rodionov VO, Presolski SI, Díaz DD, Fokin VV, Finn MG (2007) J Am Chem Soc 129:12705

    Article  CAS  Google Scholar 

  31. Kamata K, Nakagawa Y, Yamaguchi K, Mizuno N (2008) J Am Chem Soc 130:15304

    Article  CAS  Google Scholar 

  32. Hathaway BJ, Billing DE (1970) Coord Chem Rev 5:143

    Article  CAS  Google Scholar 

  33. Hay AS (1962) J Org Chem 27:3320

    Article  CAS  Google Scholar 

  34. Liu Q, Burton DJ (1997) Tetrahedron Lett 38:4371

    Article  CAS  Google Scholar 

  35. Rossi R, Carpita A, Bigelli C (1985) Tetrahedron Lett 26:523

    Article  CAS  Google Scholar 

  36. Lei A, Srivastava M, Zhang X-D (2002) J Org Chem 67:1969

    Article  CAS  Google Scholar 

  37. Li J-H, Liang Y, Zhang X-D (2005) Tetrahedron 61:1903

    Article  CAS  Google Scholar 

  38. Herrmann WA, Böhm VPW, Gstöttmayr CVK, Grosche M, Reisinger C-P, Weskamp T (2001) J Organomet Chem 618:616

    Article  Google Scholar 

  39. Gil-Moltó J, Nájera C (2005) Eur J Org Chem 4073

  40. Fairlamb IJS, Bäuerlein PS, Marrison LR, Dickinson JM (2003) Chem Commun 632

  41. Li J-H, Liang Y, Xie Y-X (2005) J Org Chem 70:4393

    Article  CAS  Google Scholar 

  42. Boglio C, Lemiére G, Hasenknopf B, Thorimbert S, Lacôte E, Malacria M (2006) Angew Chem Int Ed 45:3324

    Article  CAS  Google Scholar 

  43. Boglio C, Micoine K, Rémy P, Hasenknopf B, Thorimbert S, Lacôte E, Malacria M, Afonso C, Tabet JC (2007) Chem Eur J 13:5426

    Article  CAS  Google Scholar 

  44. Kikukawa Y, Yamaguchi S, Nakagawa Y, Uehara K, Uchida S, Yamaguchi K, Mizuno N (2008) J Am Chem Soc 130:15872

    Article  CAS  Google Scholar 

  45. Zonnevijlle F, Tourné CM, Tourné GF (1982) Inorg Chem 21:2742

    Article  CAS  Google Scholar 

  46. Liu J, Ortéga F, Sethuraman P, Katsoulis DE, Costello CE, Pope MT (1992) J Chem Soc Dalton Trans 1901

  47. Cowan JJ, Bailey AJ, Heintz RA, Do BT, Hardcastle KI, Hill CL, Weinstock IA (2001) Inorg Chem 40:6666

    Article  CAS  Google Scholar 

  48. Maksimov GM, Fedotov MA (2001) Russ J Inorg Chem 46:327

    Google Scholar 

  49. Ooi T, Maruoka K (2000) In: Yamamoto H (ed) Lewis acids in organic synthesis. Wiley-VCH, Weinheim, p 191

  50. Wulff WD (2000) In: Yamamoto H (ed) Lewis acids in organic synthesis. Wiley-VCH, Weinheim, p 283

  51. Saito S (2004) In: Yamamoto H, Oshima K (ed) Main group metals in organic systhesis. Wiley-VCH, Weinheim, p 189

  52. Weiner H, Aiken JD III, Finke RG (1996) Inorg Chem 35:7905

    Article  CAS  Google Scholar 

  53. Emeis CA (1993) J Catal 141:347

    Article  CAS  Google Scholar 

  54. Pybus DH, Sell CS (1999) The chemistry of fragrances. RSC Paperbook, Cambridge

    Book  Google Scholar 

  55. Corma A (1995) Chem Rev 95:559

    Article  CAS  Google Scholar 

  56. Okuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113

    Article  CAS  Google Scholar 

  57. MacMonagle JB, Moffat JB (1984) J Colloid Interface Sci 101:479

    Article  Google Scholar 

  58. Uchida S, Hikichi S, Akatsuka T, Tanaka T, Kawamoto R, Lesbani A, Nakagawa Y, Uehara K, Mizuno N (2007) Chem Mater 19:4694

    Article  CAS  Google Scholar 

  59. Uchida S, Mizuno N (2003) Chem Eur J 9:5850

    Article  CAS  Google Scholar 

  60. Yamaguchi K, Mizuno N (2002) New J Chem 26:972

    Article  CAS  Google Scholar 

  61. Sheldon RA, Wallau M, Arends IWCE, Schuchardt U (1998) Acc Chem Res 31:485

    Article  CAS  Google Scholar 

  62. Yamaguchi K, Yoshida C, Uchida S, Mizuno N (2005) J Am Chem Soc 127:530

    Article  CAS  Google Scholar 

  63. Kasai J, Nakagawa Y, Uchida S, Yamaguchi K, Mizuno N (2006) Chem Eur J 12:4176

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was accomplished through tremendous efforts of co-workers in our laboratory listed in the references (12, 16-21, 31, 44, 58, 59, 62, and 63). This work was supported in part by the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (JST), the Global COE Program (Chemistry Innovation through Cooperation of Science and Engineering), and Grants-in-Aid for Scientific Researches from Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noritaka Mizuno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizuno, N., Yamaguchi, K. & Kamata, K. Molecular Design of Polyoxometalate-Based Compounds for Environmentally-Friendly Functional Group Transformations: From Molecular Catalysts to Heterogeneous Catalysts. Catal Surv Asia 15, 68–79 (2011). https://doi.org/10.1007/s10563-011-9111-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-011-9111-2

Keywords

Navigation