Skip to main content
Log in

Hydrogen bond-mediated polyoxometalate-based metal-organic networks for efficient and selective oxidation of aryl alkenes to aldehydes

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Selective oxidation of aryl alkenes to aldehydes is an important approach to produce industrial raw materials, in which the exploration of an efficient heterogeneous catalyst is significant but challenging. In this work, three hydrogen bond-mediated polyoxometalate(POM)-contained metal–organic networks with the formulas of [Ni(BTD)2(H2O)2]2[SiW12O40]·12H2O (1), [Ni(BTD)2(H2O)]2[SiW12O40]·6H2O (2) and [Zn(BTD)2(H2O)]2[SiW12O40]·6H2O (3) (BTD = 4H,4ʹH-[3,3ʹ-bi(1,2,4-triazole)]-5,5ʹ-diamine) were hydrothermally synthesized, in which the metal–organic fragments interact with POM clusters via abundant hydrogen bonding to extend the structure into three-dimensional supramolecular networks. To be explored as heterogenous catalysts, compounds 13 showed high catalytic activity and selectivity for the selective oxidation of styrene to benzaldehyde. Among them, compound 1 exhibits the highest performance with ca. 99% styrene conversion and ca. 99% selectivity of benzaldehyde in 5 h. Moreover, compound 1 displays rich substrate compatibility, recyclability and good structural stability. A series of experiments demonstrated that the high performance of compound 1 should be attributed to the synergistic effect among polyoxoanion and coordination-unsaturated metal centers in metal–organic fragments, which facilitates the activation of H2O2 and styrene substrates, thus enhancing the catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

CCDC 2104718 and 2104720–2104721 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: + 44 1223 336033.

References

  1. Pathan S, Patel A. Transition-metal-substituted phosphomolybdates: catalytic and kinetic study for liquid-phase oxidation of styrene. Ind Eng Chem Res. 2013;52(34):11913.

    Article  CAS  Google Scholar 

  2. Liu B, Wang P, Lopes A, Jin L, Zhong W, Pei Y, Suib SL, He J. Au-carbon electronic interaction mediated selective oxidation of styrene. ACS Catal. 2017;7(5):3483.

    Article  CAS  Google Scholar 

  3. Ainembabazi D, Reid C, Chen A, An N, Kostal J, Voutchkova-Kostal A. Decarbonylative olefination of aldehydes to alkenes. J Am Chem Soc. 2020;142(2):696.

    Article  CAS  Google Scholar 

  4. Choudhary VR, Dhar A, Jana P, Jha R, Uphade BS. A green process for chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst. Green Chem. 2005;7(11):768.

    Article  CAS  Google Scholar 

  5. Sarma BB, Efremenko I, Neumann R. Oxygenation of methylarenes to benzaldehyde derivatives by a polyoxometalate mediated electron transfer–oxygen transfer reaction in aqueous sulfuric acid. J Am Chem Soc. 2015;137(18):5916.

    Article  CAS  Google Scholar 

  6. Yadav GD, Mistry CK. A new model of capsule membrane phase transfer catalysis for oxidation of benzyl chloride to benzaldehyde with hydrogen peroxide. J Mol Catal A Chem. 1995;102(2):67.

    Article  CAS  Google Scholar 

  7. Burange AS, Kale SR, Zboril R, Gawande MB, Jayaram RV. Magnetically retrievable MFe2O4 spinel (M = Mn Co, Cu, Ni, Zn) catalysts for oxidation of benzylic alcohols to carbonyls. RSC Adv. 2014;4(13):6597.

    Article  CAS  Google Scholar 

  8. Yang D, Zhang C, Wang XC. A novel epoxidation reaction of olefins using a combination of chloramine-M, benzaldehyde, and benzyltriethylammonium chloride. J Am Chem Soc. 2000;122(17):4039.

    Article  CAS  Google Scholar 

  9. Rubinstein A, Jimenez-Lozanao P, Carbo JJ, Poblet JM, Neumann R. Aerobic carbon-carbon bond cleavage of alkenes to aldehydes catalyzed by first-row transition-metal-substituted polyoxometalates in the presence of nitrogen dioxide. J Am Chem Soc. 2014;136(31):10941.

    Article  CAS  Google Scholar 

  10. Wang AQ, Jing HW. Tunable catalytic activities and selectivities of metal ion doped TiO2 nanoparticles–oxidation of organic compounds. Dalton Trans. 2014;43(3):1011.

    Article  CAS  Google Scholar 

  11. Arends IWCE, Sheldon RA. Recent developments in selective catalytic epoxidations with H2O2. Top Catal. 2002;19(1):133.

    Article  CAS  Google Scholar 

  12. Ramirez-Verduzco LF, Torres-Garcia E, Gomez-Quintana R, Gonzalez-Pena V, Murrieta-Guevara F. Desulfurization of diesel by oxidation/extraction scheme: influence of the extraction solvent. Catal Today. 2004;98:289.

    Article  CAS  Google Scholar 

  13. Ha Y, Mu MM, Liu QL, Ji N, Song CF, Ma DG. Mn-MIL-100 heterogeneous catalyst for the selective oxidative cleavage of alkenes to aldehydes. Catal Comm. 2018;103:51.

    Article  CAS  Google Scholar 

  14. Dimitratos N, Lopez-Sanchez JA, Hutchings GJ. Selective liquid phase oxidation with supported metal nanoparticles. Chem Sci. 2012;3(1):20.

    Article  CAS  Google Scholar 

  15. Dhakshinamoorthy A, Alvaro M, Garcia H. Commercial metal–organic frameworks as heterogeneous catalysts. Chem Commun. 2012;48(92):11275.

    Article  CAS  Google Scholar 

  16. Li DD, Ma XY, Wang QZ, Ma PT, Niu JY, Wang JP. Copper-containing polyoxometalate-based metal–organic frameworks as highly efficient heterogeneous catalysts toward selective oxidation of alkylbenzenes. Inorg Chem. 2019;58(23):15832.

    Article  CAS  Google Scholar 

  17. Wang QZ, Xu BJ, Wang YY, Wang H, Hu X, Ma PT, Wang JY. Polyoxometalate-incorporated framework as a heterogeneous catalyst for selective oxidation of C-H bonds of alkylbenzenes. Inorg Chem. 2021;60(11):7753.

    Article  CAS  Google Scholar 

  18. Xu BJ, Xu Q, Wang QZ, Liu Z, Zhao RK, Li DD, Ma PT, Wang JP, Niu JY. A copper-containing polyoxometalate-based metal–organic framework as an efficient catalyst for selective catalytic oxidation of alkylbenzenes. Inorg Chem. 2021;60(7):4792.

    Article  CAS  Google Scholar 

  19. Tian HR, Liu YW, Zhang Z, Liu SM, Dang TY, Li XH, Sun XW, Lu Y, Liu SX. A multicentre synergistic polyoxometalate-based metal–organic framework for one-step selective oxidative cleavage of β-O-4 lignin model compounds. Green Chem. 2020;22(1):248.

    Article  CAS  Google Scholar 

  20. Tian HR, Zhang Z, Liu SM, Dang TY, Li Z, Lu Y, Liu SX. A highly stable polyoxovanadate-based Cu(I)–MOF for the carboxylative cyclization of CO2 with propargylic alcohols at room temperature. Green Chem. 2020;22(21):7513.

    Article  CAS  Google Scholar 

  21. Liu QQ, Wang XL, Lin HY, Chang ZH, Zhang YC, Tian Y, Lu JJ, Yu L. Two new polyoxometalate-based metal-organic complexes for the detection of trace Cr(VI) and their capacitor performance. Dalton Trans. 2011;50(27):9450.

    Article  Google Scholar 

  22. Wang SS, Yang GY. Recent advances in polyoxometalate-catalyzed reactions. Chem Rev. 2015;115(11):4893.

    Article  CAS  Google Scholar 

  23. Du DY, Qin JS, Li SL, Su ZM, Lan YQ. Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem Soc Rev. 2014;43(13):4615.

    Article  CAS  Google Scholar 

  24. Sha JQ, Sun JW, Wang C, Li GM, Yan PF, Li MT. Syntheses study of Keggin POM supporting MOFs system. Cryst Growth Des. 2012;12(5):2242.

    Article  CAS  Google Scholar 

  25. Sun CY, Liu SX, Liang DD, Shao KZ, Ren YH, Su ZM. Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates. J Am Chem Soc. 2009;131(8):1883.

    Article  CAS  Google Scholar 

  26. Ma YY, Peng HY, Liu JN, Wang YH, Hao XL, Feng XJ, Khan SU, Tan HQ, Li YG. Polyoxometalate-based metal–organic frameworks for selective oxidation of aryl alkenes to aldehydes. Inorg Chem. 2018;57(7):4109.

    Article  CAS  Google Scholar 

  27. Cui WJ, Zhao Q, Zhu HT, Hu N, Ma YY, Han ZG, Li YG. Keggin-type polyoxometalate-based supramolecular complex for selective oxidation of styrene to benzaldehyde. J Coord Chem. 2020;73:2521.

    Article  CAS  Google Scholar 

  28. Zhou T, Zhang J, Ma YY, Gao XR, Xue QH, Gao YZ, Han ZG. A bicadmium-substituted polyoxometalate network based on a vanadosilicate cluster for the selective oxidation of styrene to benzaldehyde. Inorg Chem. 2020;59(9):5803.

    Article  CAS  Google Scholar 

  29. Xiong J, Kubo K, Noro SI, Akutagawa T, Nakamura T. Self-assembled structure of inorganic–organic hybrid crystals based on Keggin polyoxometallates [SMo12O402–] and supramolecular cations. Cryst Growth Des. 2016;16(2):800.

    Article  CAS  Google Scholar 

  30. Wang YL, Ma YY, Zhao Q, Hou L, Han ZG. Polyoxometalate-based crystalline catalytic materials for efficient electrochemical detection of Cr (VI). Sens Actuators B. 2020;305:127469.

    Article  CAS  Google Scholar 

  31. Yu RM, Kuang XF, Wu XY, Lu CZ, Donahue JP. Stabilization and immobilization of polyoxometalates in porous coordination polymers through host–guest interactions. Coord Chem Rev. 2009;253:2872.

    Article  CAS  Google Scholar 

  32. Xu XB, Lu Y, Yang Y, Nosheen F, Wang X. Tuning the growth of metal-organic framework nanocrystals by using polyoxometalates as coordination modulators. Sci China Mate. 2015;58(5):370.

    Article  CAS  Google Scholar 

  33. Otto E. Five-fold diamond structure of adamantane-1,3,5,7-tetracarboxylic acid. J Am Chem Soc. 1988;110(12):3747

    Article  Google Scholar 

  34. Michel S, Su D, James DW. Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers. J Am Chem Soc. 1991;113(12):4696

    Article  Google Scholar 

  35. Wang X, Michel S, James DW. Molecular tectonics. Three-dimensional organic networks with zeolitic properties. J Am Chem Soc. 1994;116(26):12119

    Article  CAS  Google Scholar 

  36. Martin JD, Leafblad BR. The hydrogen-bonded framework of the first anti-zeotype : [{(H2NEt2)2}2(CuCl4)][AlCl4]. Angew Chem Int Ed. 1998;37(23):3318.

    Article  CAS  Google Scholar 

  37. Li YL, Yin Q, Liu TF, Cao R, Yuan WB. A novel porphyrin-based hydrogen-bonded organic framework. Chinese J Struct Chem. 2019;38(12):2083.

    CAS  Google Scholar 

  38. Kandambeth S, Shinde DB, Panda MK, Lukose B, Heine T, Banerjee R. Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds. Angew Chem Int Ed. 2013;52(49):13052.

    Article  CAS  Google Scholar 

  39. Li P, He YB, Zhao YF, Weng LH, Wang HL, Krishna R, Wu H, Zhou W, Keeffe MO, Han Y, Chen BL. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature. Angew Chem Int Ed. 2015;54(2):574.

    CAS  Google Scholar 

  40. Li PF, Qian CX, Lough AJ, Ozin GA, Seferos DS. Permanently porous hydrogen-bonded frameworks of rod-like thiophenes, selenophenes, and tellurophenes capped with MIDA boronates. Dalton Trans. 2016;45(24):9754.

    Article  CAS  Google Scholar 

  41. Cullen DA, Gardiner MG, White NG. A three dimensional hydrogen bonded organic framework assembled through antielectrostatic hydrogen bonds. Chem Commun. 2019;55(80):12020.

    Article  CAS  Google Scholar 

  42. Boer SA, Morshedi M, Tarzia A, Doonan CJ, White NG. Molecular tectonics: a node-and-linker building block approach to a family of hydrogen-bonded frameworks. Chem Eur J. 2019;25(42):10006.

    Article  CAS  Google Scholar 

  43. Song YT, Peng YW, Yao S, Zhang P, Wang YJ, Gu JM, Lu TB, Zhang ZM. Co-POM@ MOF-derivatives with trace cobalt content for highly efficient oxygen reduction. Chin Chem Lett. 2021. https://doi.org/10.1016/j.cclet.2021.08.045.

    Article  Google Scholar 

  44. Zhang ZM, Zhang T, Wang C, Lin ZK, Long LS, Lin WB. Photosensitizing metal–organic framework enabling visible-light-driven proton reduction by a Wells–Dawson-type polyoxometalate. J Am Chem Soc. 2015;137(9):3197.

    Article  CAS  Google Scholar 

  45. Li H, Yao S, Wu HL, Qu JY, Zhang ZM, Lu TB, Lin WB, Wang EB. Charge-regulated sequential adsorption of anionic catalysts and cationic photosensitizers into metal-organic frameworks enhances photocatalytic proton reduction. Appl Catal B Environ. 2018;224:46.

    Article  CAS  Google Scholar 

  46. Paul L, Dolai M, Panja A, Ali M. Hydrothermal synthesis of two supramolecular inorganic–organic hybrid phosphomolybdates based on Ni (II) and Co (II) ions: structural diversity and heterogeneous catalytic activities. New J Chem. 2016;40(8):6931.

    Article  CAS  Google Scholar 

  47. Zhang N, Yin Q, Guo S, Chen KK, Liu TF, Wang P, Zhang ZM, Lu TB. Hot-electron leading-out strategy for constructing photostable HOF catalysts with outstanding H2 evolution activity. Appl Catal B: Environ. 2021;296:120337.

    Article  CAS  Google Scholar 

  48. Duarte TA, Estrada AC, Simões MM, Santos IC, Cavaleiro AM, Neves MGP, Cavaleiro JA. Homogeneous catalytic oxidation of styrene and styrene derivatives with hydrogen peroxide in the presence of transition metal-substituted polyoxotungstates. Catal Sci Technol. 2015;5(1):351.

    Article  CAS  Google Scholar 

  49. Du ZY, Chen Z, Kang RK, Han YM, Ding J, Cao JP, Jiang W, Fang M, Mei H, Xu Y. Two 2D layered P4Mo6 clusters with potential bifunctional properties: proton conduction and CO2 Photoreduction. Inorg Chem. 2020;59(17):12876.

    Article  CAS  Google Scholar 

  50. Mu MM, Wang YW, Qin YT, Yan XL, Li Y, Chen LG. Two-dimensional imine-linked covalent organic frameworks as a platform for selective oxidation of olefins. ACS Appl Mater Interfaces. 2017;9(27):22856.

    Article  CAS  Google Scholar 

  51. Wu YP, Zhou W, Zhao J, Dong WW, Lan YQ, Li DS, Sun CH, Bu XH. Surfactant-assisted phase-selective synthesis of new cobalt MOFs and their efficient electrocatalytic hydrogen evolution reaction. Angew Chem Int Ed. 2017;56:13001.

    Article  CAS  Google Scholar 

  52. Gresley NM, Griffith WP, Laemmel AC, Nogueira HI, Parkin BC. Studies on polyoxo and polyperoxo-metalates part 5: peroxide-catalysed oxidations with heteropolyperoxo-tungstates and-molybdates. J Mol Catal A Chem. 1997;117:185.

    Article  CAS  Google Scholar 

  53. Hill CL, Prosser-McCartha CM. Homogeneous catalysis by transition metal oxygen anion clusters. Coord Chem Rev. 1995;143:407.

    Article  CAS  Google Scholar 

  54. Sun WL, Hu JL. Oxidation of styrene to benzaldehyde with hydrogen peroxide in the presence of catalysts obtained by the immobilization of H3PW12O40 on SBA-15 mesoporous material. Reac Kinet Mech Cat. 2016;119(1):305.

    Article  CAS  Google Scholar 

  55. Hu JL, Li KX, Li W, Ma FY, Guo YH. Selective oxidation of styrene to benzaldehyde catalyzed by Schiff base-modified ordered mesoporous silica materials impregnated with the transition metal-monosubstituted Keggin-type polyoxometalates. Appl Catal A Gen. 2009;364(1–2):211.

    Article  CAS  Google Scholar 

  56. Maurya MR, Arya A, Adao P, Pessoa JC. Immobilisation of oxovanadium (IV), dioxomolybdenum (VI) and copper (II) complexes on polymers for the oxidation of styrene, cyclohexene and ethylbenzene. Appl Catal A Gen. 2008;351(2):239.

    Article  CAS  Google Scholar 

  57. Ingle RH, Raj NKK. Lacunary Keggin type polyoxotungstates in conjunction with a phase transfer catalyst: an effective catalyst system for epoxidation of alkenes with aqueous H2O2. J Mol Catal A Chem. 2008;294(1–2):8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grants 21901060, 21871076), Natural Science Foundation of Hebei Province (Grants B2019205074, B2020205008 and B2016205051), Science and Technology Project of Hebei Education Department (Grant BJ2020037), Project funded by China Postdoctoral Science Foundation (No. 2021TQ0095), Science Foundation of Hebei Normal University (L2019B15). Graduate Student Innovation Funding Project of Hebei Normal University (CXZZSS2021056).

Author information

Authors and Affiliations

Authors

Contributions

W-J Cui, S-M Zhang, Z-Y Tian, C Li and Y-M Wang wrote the draft and collected the data; Y-Y Ma and Z-G Han contributed to conceive the idea of the study. All authors contributed to the writing and revisions.

Corresponding authors

Correspondence to Yuan-Yuan Ma or Zhan-Gang Han.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 822 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, WJ., Zhang, SM., Tian, ZY. et al. Hydrogen bond-mediated polyoxometalate-based metal-organic networks for efficient and selective oxidation of aryl alkenes to aldehydes. Tungsten 4, 109–120 (2022). https://doi.org/10.1007/s42864-021-00130-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00130-5

Keywords

Navigation