Skip to main content
Log in

Chemical Immobilization of Heteropolyacid Catalyst on Inorganic Mesoporous Material for use as an Oxidation Catalyst

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Recent progress on the chemical immobilization of heteropolyacid (HPA) catalyst on inorganic mesoporous material is reported in this review. Mesostructured cellular foam silica, mesoporous carbon, and nitrogen-containing mesoporous carbon were used as supporting materials. The mesoporous materials were modified to have a positive charge, and thus, to provide sites for the immobilization of HPA catalyst. By taking advantage of the overall negative charge of heteropolyanion, the HPA catalyst was chemically immobilized on the surface-modified mesoporous material as a charge-compensating component. Characterization results showed that the HPA catalyst was finely and molecularly dispersed on the surface of mesoporous material via strong chemical immobilization, and that the pore structure of mesoporous material was still maintained even after the immobilization of HPA catalyst. The supported HPA catalysts were applied to the model vapor-phase ethanol conversion, 2-propanol conversion, and methacrolein oxidation reactions. The supported HPA catalyst showed a better oxidation catalytic activity than the unsupported HPA catalyst in the model reactions. The enhanced oxidation catalytic performance of the supported HPA catalyst was attributed to the finely dispersed HPA catalyst, which was chemically immobilized on the positive site of mesoporous material by sacrificing its proton (Brönsted acid site). The HPA catalyst chemically immobilized on mesoporous material served as an excellent oxidation catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Misono M (1987) Catal Rev Sci Eng 29:269

    Article  CAS  Google Scholar 

  2. Hill CL, Prosser-McCartha CM (1995) Coor Chem Rev 143:407

    Article  CAS  Google Scholar 

  3. Kozhevnikov IV (1995) Catal Rev Sci Eng 37:311

    Article  CAS  Google Scholar 

  4. Okuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113

    CAS  Google Scholar 

  5. Song IK, Moon SH, Lee WY (1991) Korean J Chem Eng 8:33

    Article  CAS  Google Scholar 

  6. Song IK, Barteau MA (2002) Korean J Chem Eng 19:567

    Article  CAS  Google Scholar 

  7. Keggin JF (1933) Nature 131:908

    CAS  Google Scholar 

  8. Onoue Y, Miztani Y, Akiyama S, Izumi Y (1990) Chemtech 8:432

    Google Scholar 

  9. Lim SS, Kim YH, Park GI, Lee WY, Song IK, Youn HK (1999) Catal Lett 60:199

    Article  CAS  Google Scholar 

  10. Aoshima A, Tonomura S, Yamamatsu S (1990) Polym Adv Technol 2:127

    Article  Google Scholar 

  11. Mori H, Mizuno N, Misono M (1990) J Catal 131:133

    Article  Google Scholar 

  12. Stobbe-Kreemers AW, Dielis RB, Makkee M, Scholten JJF (1995) J Catal 154:175

    Article  CAS  Google Scholar 

  13. I.K Song, Kaba MS, Barteau MA (2002) Langmuir 18:2358

    Article  CAS  Google Scholar 

  14. Ai M (1981) J Catal 71:88

    Article  Google Scholar 

  15. Kim HC, Moon SH, Lee WY (1991) Chem Lett 447

  16. Song IK, Barteau MA (2002) J Mol Catal A 182–183:185

    Article  Google Scholar 

  17. Song IK, Shnitser RB, Cowan JJ, Hill CL, Barteau MA (2002) Inorg Chem 41:1292

    Article  CAS  Google Scholar 

  18. Song IK, Barteau MA (2004) J Mol Catal A 212:229

    Article  CAS  Google Scholar 

  19. Youn MH, Park DR, Jung JC, Kim H, Barteau MA, Song IK (2007) Korean J Chem Eng 24:51

    Article  CAS  Google Scholar 

  20. Pope MT (1983) Heteropoly, isopoly oxometalates. Springer-Verlag, New York

    Google Scholar 

  21. Chu W, Yang X, Shan Y, Ye X, Wu Y (1996) Catal Lett 42:201

    Article  CAS  Google Scholar 

  22. He N-Y, Woo C-S, Kim H-G, Lee H-I (2005) Appl Catal A 281:167

    Article  CAS  Google Scholar 

  23. Nowińska K, Formaniak R, Kaleta W, Waclaw A (2003) Appl Catal A 256:115

    Article  CAS  Google Scholar 

  24. Kim P, Kim H, Yi J, Song IK (2006) Stud Surf Sci Catal 159:265

    Article  CAS  Google Scholar 

  25. Nomiya K, Murasaki H, Miwa M (1986) Polyhedron 5:1031

    Article  CAS  Google Scholar 

  26. Proń A (1992) Synth Met 46:227

    Article  Google Scholar 

  27. Poźniczek J, Kulszewicz-Bajer I, Zagórska M, Kruczała K, Dyrek K, Bielański A, Proń A (1991) J Catal 132:311

    Article  Google Scholar 

  28. Hasik M, Turek W, Stochmal E, Łapkowski M , Proń A (1994) J Catal 147:544

    Article  CAS  Google Scholar 

  29. Poźniczek J, Bielański A, Kulszewicz-Bajer I, Zagórska M, Kruczała K, Dyrek K, Proń A (1991) J Mol Catal 69:223

    Article  Google Scholar 

  30. Dziembaj R, Małecka A, Piwowarska Z, Bielański A (1996) J Mol Catal A 112:423

    Article  CAS  Google Scholar 

  31. Dong S, Jin W (1993) J Electroanal Chem 354:87

    Article  CAS  Google Scholar 

  32. Qu L-Y, Lu R-Q, Peng J, Chen Y-G, Dai Z-M (1997) Synth Met 84:135

    Article  CAS  Google Scholar 

  33. Liu Y, Murata K, Inaba M (2004) Green Chem 6:510

    Article  CAS  Google Scholar 

  34. Liu Y, Murata K, Inaba M (2006) J Mol Catal A 256:247

    Article  CAS  Google Scholar 

  35. Kaleta W, Nowińska K (2001) Chem Commun 535

  36. Kala Raj NK, Deshpande SS, Ingle RH, Raja T, Manikandan P (2004) Catal Lett 98:217

    Article  Google Scholar 

  37. Kim H, Jung JC, Kim P, Yeom SH, Lee K-Y, Song IK (2006) J Mol Catal A 259:150

    Article  CAS  Google Scholar 

  38. Kim H, Kim P, Lee K-Y, Yeom SH, Yi J, Song IK (2006) Catal Today 111:361

    Article  CAS  Google Scholar 

  39. Kim H, Jung JC, Park DR, Baeck S-H, Song IK (2007) Appl Catal A 320:159

    Article  CAS  Google Scholar 

  40. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  41. Davis ME (2002) Nature 417:813

    Article  CAS  Google Scholar 

  42. Stein A (2003) Adv Mater 15:763

    Article  CAS  Google Scholar 

  43. Kang T, Park Y, Yi J (2004) Ind Eng Chem Res 43:1478

    Article  CAS  Google Scholar 

  44. Wang X, K.Lin SK, Chan JCC, Cheng S (2005) J Phys Chem B 109:1763

    Article  CAS  Google Scholar 

  45. Cestari AR, Vieira EFS, Silva ES (2006) J Colloid Interf Sci 297:22

    Article  CAS  Google Scholar 

  46. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548

    Article  CAS  Google Scholar 

  47. Kim H, Jung JC, Yeom SH, Lee K-Y, Yi J, Song IK (2007) Mater Res Bull doi:10.1016/j.materresbull.2007.01.010

  48. Lee J, Han S, Kim H, Koh JH, Hyeon T, Moon SH (2003) Catal Today 86:141

    Article  CAS  Google Scholar 

  49. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) J Am Chem Soc 122:10712

    Article  CAS  Google Scholar 

  50. Lee JK, Song IK, Lee WY, Kim J-J (1996) J Mol Catal A 104:311

    Article  CAS  Google Scholar 

  51. Yang C-M, Weidenthaler C, Spliethoff B, Mayanna M, Schüth F (2005) Chem Mater 17:355

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge support from the Korea Science and Engineering Foundation (KOSEF R11-2002-102-00000-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyu Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Jung, J.C. & Song, I.K. Chemical Immobilization of Heteropolyacid Catalyst on Inorganic Mesoporous Material for use as an Oxidation Catalyst. Catal Surv Asia 11, 114–122 (2007). https://doi.org/10.1007/s10563-007-9025-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-007-9025-1

Keywords

Navigation