Skip to main content
Log in

An Overview on the Dehydrogenation of Alkylbenzenes with Carbon Dioxide over Supported Vanadium–Antimony Oxide Catalysts

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Utilization of carbon dioxide as a soft oxidant for the catalytic dehydrogenation of ethylbenzene (CO2-EBDH) has been recently attempted to explore a new technology for producing styrene selectively. This article summarizes the results of our recent attempts to develop effective catalyst systems for the CO2-EBDH on the basis of alumina-supported vanadium oxide catalysts. Its initial activity and on-stream stability were essentially improved by the introduction of antimony oxide as a promoter into the alumina-supported catalyst. Insertion of zirconium oxide into alumina support substantially increased the catalytic activity. Modification of alumina with magnesium oxide yielded an increase of catalyst stability of alumina-supported V–Sb oxide due to the coking suppression. Carbon dioxide has been confirmed to play a beneficial role of selective oxidant in improving the catalytic performance through the oxidative pathway, avoiding excessive reduction and maintaining desirable oxidation state of vanadium ion (V5+). The positive effect of carbon dioxide in dehydrogenation reactions of several alkylbenzenes such as 4-diethylbenzene, 4-ethyltoluene, and iso- and n-propylbenzenes was also observed. Along with the easier redox cycle between fully oxidized and partially reduced vanadium species, the optimal surface acidity of the catalyst is also responsible for achieving high activity and catalyst stability. It is highlighted that supra-equilibrium EBDH conversions were obtained over alumina-supported V–Sb oxide catalyst in CO2-EBDH as compared with those in steam-EBDH in the absence of carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lee EH (1973) Catal Rev Eng Sci 8:285

    Article  CAS  Google Scholar 

  2. Kochloefl K (1998) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol. 5. VCH, Weinhein, p 2151

    Google Scholar 

  3. Cavani F, Trifirò F (1995) Appl Catal A 133:219

    Article  CAS  Google Scholar 

  4. Mimura N, Takahara I, Saito M, Hattori T, Ohkuma K, Ando M (1998) Catal Today 45:61

    Article  CAS  Google Scholar 

  5. Bhasin MM, McCain JH, Vora BV, Imai T, Pujadό PR (2001) Appl Catal A 221:397

    Article  CAS  Google Scholar 

  6. Hirano T (1986) Appl Catal 26:81

    Article  CAS  Google Scholar 

  7. Sugino M, Shimada H, Turuda T, Miura H, Ikenaga N, Suzuki T (1995) Appl Catal A 121:125

    Article  CAS  Google Scholar 

  8. Sakurai Y, Suzaki T, Ikenaga N, Suzuki T (2000) Appl Catal A 192:281

    Article  CAS  Google Scholar 

  9. Yoo JS (1998) Catal Today 41:409

    Article  CAS  Google Scholar 

  10. Badstube T, Papp H, Dziembaj R, Kustrowski P (2000) Appl Catal A 204:153

    Article  CAS  Google Scholar 

  11. Dziembaj R, Kuśtrowski P, Chmielarz L (2003) Appl Catal A 255:35

    Article  CAS  Google Scholar 

  12. Sakurai Y, Suzaki T, Nakagawa K, Ikenaga N, Aota H, Suzuki T (2002) J Catal 209:16

    Article  CAS  Google Scholar 

  13. Chen S, Qin Z, Sun A, Wang J (2006) J Natural Gas Chem 15:11

    Article  Google Scholar 

  14. Mimura N, Takahara I, Saito M, Sasaki Y, Murata K (2002) Catal Lett 78:125

    Article  CAS  Google Scholar 

  15. Saito M, Kimura H, Mimura N, Wu J, Murata K (2003) Appl Catal A 239:71

    Article  CAS  Google Scholar 

  16. Carja G, Nakamura R, Aida T, Niiyama H (2003) J Catal 218:104

    Article  CAS  Google Scholar 

  17. Li X-H, Li W-Y, Xie K-C (2005) Catal Lett 105:223

    Article  CAS  Google Scholar 

  18. Chen S, Qin Z, Xu X, Wang J (2006) Appl Catal A 302:185

    Article  CAS  Google Scholar 

  19. Chang J-S, Park S-E, Park M-S (1997) Chem Lett 26:1123

    Article  Google Scholar 

  20. Park M-S, Chang J-S, Kim DS, Park S-E (2002) Res Chem Intermed 28:461

    Article  CAS  Google Scholar 

  21. Park S-E, Chang J-S, Yoo JS (2002) In: Maroto-Valer MM, Soong Y, Song C (eds) Environmental challenges and greenhouse gas control for fossil fuel utilization in the 21st century. Kluwer Academic/Plenum Publishers, New York, p 359

    Google Scholar 

  22. Grzybowska-Świerkosz B, Trifiro F, Vedrine JC (eds) (1997) Appl Catal A 157:1–420 (complete issue)

    Google Scholar 

  23. Mamedov EA, Cortes Corberan V (1995) Appl Catal A 127:1 (review)

    Article  CAS  Google Scholar 

  24. Rizayev RG, Mamedov EA, Vislovskii VP, Sheinin VE (1992) Appl Catal A 83:103 (review)

    Article  Google Scholar 

  25. Grasselli RK (1999) Catal Today 49:141

    Article  CAS  Google Scholar 

  26. Bañares M, Wachs IE (eds) (2003) Catal Today 78 (special issue)

  27. Belomestnykh IP, Skrigan EA, Rozhdestvenskaya NN, Isaguliants GV (1992) Stud Surf Sci Catal 72:453

    Article  CAS  Google Scholar 

  28. Hanuza J, Jezowska-Trzebiatowska B, Oganowski W (1985) J Mol Catal 29:109

    Article  CAS  Google Scholar 

  29. Chang WS, Chen YZ, Yang BL (1995) Appl Catal A 124:221

    Article  CAS  Google Scholar 

  30. Mamedov EA, Talyshinskii RM, Rizayev RG, Fierro JLG, Cortes Corberan V (1996) Catal Today 32:177

    Article  CAS  Google Scholar 

  31. Vislovskiy VP, Chang J-S, Park M-S, Park S-E (2002) Catal Commun 3:227

    Article  CAS  Google Scholar 

  32. Chang J-S, Vislovskiy VP, Park M-S, Hong D-Y, Yoo JS, Park S-E (2003) Green Chem 5:587

    Article  CAS  Google Scholar 

  33. Park M-S, Vislovskiy VP, Chang J-S, Shul Y-G, Yoo JS, Park S-E (2003) Catal Today 87:205

    Article  CAS  Google Scholar 

  34. Hong D-Y, Chang J-S, Lee J-H, Vislovskiy VP, Jhung SH, Park S-E, Park Y-H (2006) Catal Today 112:86

    Article  CAS  Google Scholar 

  35. Hong D-Y, Chang J-S, Vislovskiy VP, Park S-E, Park Y-H, Yoo JS (2006) Chem Lett 35:28

    Article  CAS  Google Scholar 

  36. Hong D-Y, Vislovskiy VP, Park S-E, Park M-S, Yoo JS, Chang J-S (2005) Bull Korean Chem Soc 26:1743

    Article  CAS  Google Scholar 

  37. Hong D-Y, Vislovskiy VP, Park Y-H, Chang J-S (2006) Bull Korean Chem Soc 27:789

    Article  CAS  Google Scholar 

  38. Grzybowska B, Słoczyński J, Grabowski R, Wcisło K, Kozłowska A, Stoch J, Zieliński J (1998) J Catal 178:687

    Article  CAS  Google Scholar 

  39. Evans OR, Bell A, Tilley TD (2004) J Catal 226:292

    Article  CAS  Google Scholar 

  40. Machli M, Heracleous E, Lemonidou AA (2002) Appl Catal A 236:23

    Article  CAS  Google Scholar 

  41. Vislovskiy VP, Bychkov VYu, Sinev MYu, Shamilov NT, Ruiz P, Schay Z (2000) Catal Today 61:325

    Article  CAS  Google Scholar 

  42. Kondratenko EV, Baerns M (2001) Appl Catal A 222:133

    Article  CAS  Google Scholar 

  43. Shiju NR, Anilkumar M, Mirajkar SP, Gopinath CS, Rao BS, Satyanarayana CV (2005) J Catal 230:484

    Article  CAS  Google Scholar 

  44. Centeno MA, Malet P, Carrizosa I, Odriozola JA (2000) J Phys Chem B 104:3310

    Article  CAS  Google Scholar 

  45. Xue E, Ross JRH, Mallada R, Menendez M, Santamaria J, Perregard J, Nielsen PEH (2001) Appl Catal A 210:271

    Article  CAS  Google Scholar 

  46. Choi Y-S, Park Y-K, Chang J-S, Park S-E, Cheetham AK (2000) Catal Lett 69:93

    Article  CAS  Google Scholar 

  47. Centi G, Perathoner S (1998) Catal Today 41:457

    Article  CAS  Google Scholar 

  48. Zhu XM, Schön M, Bartmann U, van Veen AC, Muhler M (2004) Appl Catal A 266:99

    Article  CAS  Google Scholar 

  49. Bartholomew CH (1984) Chem Eng 91:96

    CAS  Google Scholar 

  50. Bychkov VYu, Sinev MYu, Vislovskii VP (2001) Kinet Catal 42:574

    Article  CAS  Google Scholar 

  51. Vislovskiy VP, Shamilov NT, Sardarly AM, Talyshinskii RM, Bychkov VYu, Ruiz P, Cortes Corberan V, Schay Z, Koppany Zs (2003) Appl Catal A 250:143

    Article  CAS  Google Scholar 

  52. Chen K, Khodakov A, Yang J, Bell AT, Iglesia E (1999) J Catal 186:325

    Article  CAS  Google Scholar 

  53. Wang D, Kung HH, Barteau MA (2000) Appl Catal A 201:203

    Article  CAS  Google Scholar 

  54. Le Bars J, Auroux A, Forissier M, Vedrine JC (1996) J Catal 162:250

    Article  Google Scholar 

  55. Centi G, Perathoner S, Trifiro F (1997) Appl Catal A 157:143

    Article  CAS  Google Scholar 

  56. Datka J, Sarbak Z, Eischens RP (1994) J Catal 145:544

    Article  CAS  Google Scholar 

  57. Tellez C, Abon M, Dalmon JA, Mirodatos C, Santamaria J (2000) J Catal 195:113

    Article  CAS  Google Scholar 

  58. Bielanski A, Najbar M (1997) Appl Catal A 157:223

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institutional Research Program (KK-0603-F0) of KRICT. VPV thanks the KOFST for the Brain Pool fellowship. The authors thank Dr. Jin S. Yoo, Dr. Sung Hwa Jhung, and Dr. Min Seok Park for their helpful contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-San Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, JS., Hong, DY., Vislovskiy, V.P. et al. An Overview on the Dehydrogenation of Alkylbenzenes with Carbon Dioxide over Supported Vanadium–Antimony Oxide Catalysts. Catal Surv Asia 11, 59–69 (2007). https://doi.org/10.1007/s10563-007-9021-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-007-9021-5

Keywords

Navigation