Skip to main content
Log in

Control of CeO2 Defect Sites for Photo- and Thermal- Synergistic Catalysis of CO2 and Methanol to DMC

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Quadrangular-pyramid-octahedral CeO2 with defects was successfully prepared and first used as effective and reusable heterogeneous catalyst for photo- and thermal- synergistic catalytic synthesis of DMC, and it showed better catalytic performance than that of thermocatalysis alone. The corner defects may be the active site based on experimental result and DFT calculation.

Graphical Abstract

The CeO2 with specific defects was prepared by PECVD method and first applied for photo-thermal synergistic catalytic synthesis of DMC from CO2 and methanol, which showed superior catalytic performance to that of thermocatalysis alone, and the active site maybe the corner defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ding X, Dong X, Kuang D, Wang S, Zhao X, Wang Y (2014) Highly efficient catalyst PdCl2-CuCl2-KOAc/AC@Al2O3 for gas-phase oxidative carbonylation of methanol to dimethyl carbonate: preparation and reaction mechanism. Chem Eng J 240:221–227

    Article  CAS  Google Scholar 

  2. Fiorani G, Perosa A, Selva M (2018) Dimethyl carbonate: a versatile reagent for a sustainable valorization of renewables. Green Chem 20(2):288–322

    Article  CAS  Google Scholar 

  3. Tundo P, Selva M (2002) The chemistry of dimethyl carbonate. Acc Chem Res 35(9):706–716

    Article  CAS  PubMed  Google Scholar 

  4. Tan HZ, Wang ZQ, Xu ZN, Sun J, Xu YP, Chen QS, Chen Y, Guo GC (2018) Review on the synthesis of dimethyl carbonate. Catal Today 316:2–12

    Article  CAS  Google Scholar 

  5. Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev 118(2):434–504

    Article  CAS  PubMed  Google Scholar 

  6. Figueiredo MC, Trieu V, Eiden S, Koper MT (2017) Spectro-electrochemical examination of the formation of dimethyl carbonate from CO and methanol at different electrode materials. J Am Chem Soc 139(41):14693–14698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi L, Wang SJ, Wong DS, Huang K (2017) Novel process design of synthesizing propylene carbonate for dimethyl carbonate production by indirect alcoholysis of urea. Ind Eng Chem Res 56(40):11531–11544

    Article  CAS  Google Scholar 

  8. Nivangune NT, Ranade VV, Kelkar AA (2017) MgFeCe ternary layered double hydroxide as highly efficient and recyclable heterogeneous base catalyst for synthesis of dimethyl carbonate by transesterification. Catal Lett 147(10):2558–2569

    Article  CAS  Google Scholar 

  9. Bian J, Wei XW, Jin YR, Wang L, Luan DC, Guan ZP (2010) Direct synthesis of dimethyl carbonate over activated carbon supported Cu-based catalysts. Chem Eng J 165(2):686–692

    Article  CAS  Google Scholar 

  10. Sun J, Lu B, Wang X, Li X, Zhao J, Cai Q (2013) A functionalized basic ionic liquid for synthesis of dimethyl carbonate from methanol and CO2. Fuel Process Technol 115:233–237

    Article  CAS  Google Scholar 

  11. Tamboli AH, Chaugule AA, Kim H (2017) Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol. Chem Eng J 323:530–544

    Article  CAS  Google Scholar 

  12. Santos BA, Silva VM, Loureiro JM, Rodrigues AE (2014) Review for the direct synthesis of dimethyl carbonate. ChemBioEng Rev 1(5):214–229

    Article  CAS  Google Scholar 

  13. Kongpanna P, Pavarajarn V, Gani R, Assabumrungrat S (2015) Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production. Chem Eng Res Des 93:496–510

    Article  CAS  Google Scholar 

  14. Bian J, Xiao M, Wang SJ, Lu YX, Meng YZ (2009) Carbon nanotubes supported Cu–Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Appl Surf Sci 255(16):7188–7196

    Article  CAS  Google Scholar 

  15. Bian J, Xiao M, Wang SJ, Lu YX, Meng YZ (2009) Novel application of thermally expanded graphite as the support of catalysts for direct synthesis of DMC from CH3OH and CO2. J Colloid Interface Sci 334(1):50–57

    Article  CAS  PubMed  Google Scholar 

  16. Wang XJ, Xiao M, Wang SJ, Lu YX, Meng YZ (2007) Direct synthesis of dimethyl carbonate from carbon dioxide and methanol using supported copper (Ni, V, O) catalyst with photo-assistance. J Mol Catal A Chem 278(1):92–96

    Article  CAS  Google Scholar 

  17. Wu XL, Meng YZ, Xiao M, Lu YX (2006) Direct synthesis of dimethyl carbonate (DMC) using Cu-Ni/VSO as catalyst. J Mol Catal A Chem 249(1):93–97

    Article  CAS  Google Scholar 

  18. Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K (1999) A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia. Catal Lett 58(4):225–229

    Article  CAS  Google Scholar 

  19. Jung KT, Bell AT (2001) An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia. J Catal 204(2):339–347

    Article  CAS  Google Scholar 

  20. Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K (2000) Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. J Catal 192(2):355–362

    Article  CAS  Google Scholar 

  21. Tomishige K, Kunimori K (2002) Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: effect of H2O removal from the reaction system. Appl Catal A Gen 237(1):103–109

    Article  CAS  Google Scholar 

  22. Lee HJ, Park S, Song IK, Jung JC (2011) Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Ga2O3/Ce0.6Zr0.4O2 catalysts: effect of acidity and basicity of the catalysts. Catal Lett 141(4):531–537

    Article  CAS  Google Scholar 

  23. Tomishige K, Furusawa Y, Ikeda Y, Asadullah M, Fujimoto K (2001) CeO2–ZrO2 solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal Lett 76(1):71–74

    Article  CAS  Google Scholar 

  24. Aresta M, Dibenedetto A, Pastore C, Cuocci C, Aresta B, Cometa S, De Giglio E (2008) Cerium(IV)oxide modification by inclusion of a hetero-atom: a strategy for producing efficient and robust nano-catalysts for methanol carboxylation. Catal Today 137(1):125–131

    Article  CAS  Google Scholar 

  25. Ballivet-Tkatchenko D, Chambrey S, Keiski R, Ligabue R, Plasseraud L, Richard P, Turunen H (2006) Direct synthesis of dimethyl carbonate with supercritical carbon dioxide: characterization of a key organotin oxide intermediate. Catal Today 115(1–4):80–87

    Article  CAS  Google Scholar 

  26. Yoshida Y, Arai Y, Kado S, Kunimori K, Tomishige K (2006) Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts. Catal Today 115(1):95–101

    Article  CAS  Google Scholar 

  27. Hofmann HJ, Brandner A, Claus P (2012) Direct synthesis of dimethyl carbonate by carboxylation of methanol on ceria-based mixed oxides. Chem Eng Technol 35(12):2140–2146

    Article  CAS  Google Scholar 

  28. Zhang M, Xiao M, Wang S, Han D, Lu Y, Meng Y (2015) Cerium oxide-based catalysts made by template-precipitation for the dimethyl carbonate synthesis from Carbon dioxide and methanol. J Clean Prod 103:847–853

    Article  CAS  Google Scholar 

  29. Kumar P, With P, Srivastava VC, Gläser R, Mishra IM (2015) Conversion of carbon dioxide along with methanol to dimethyl carbonate over ceria catalyst. J Environ Chem Eng 3(4 Part A):2943–2947

    Article  CAS  Google Scholar 

  30. Tomishige K, Gu Y, Chang T, Tamura M, Nakagawa Y (2020) Catalytic function of CeO2 in non-reductive conversion of CO2 with alcohols. Mater Today Sustain 9:100035

    Article  Google Scholar 

  31. Liu H, Zhu D, Jia B, Huang Y, Cheng Y, Luo X, Liang Z (2022) Study on catalytic performance and kinetics of high efficiency CeO2 catalyst prepared by freeze drying for the synthesis of dimethyl carbonate from CO2 and methanol. Chem Eng Sci 254:117614

    Article  CAS  Google Scholar 

  32. He Z, Sun Y, Wei Y, Wang K, Wang W, Chen Z, Wang Z, Tian Y, Liu Z (2022) Synthesis of dimethyl carbonate from CO2 and methanol over CeO2 nanoparticles/Co3O4 nanosheets. Fuel 325:124945

    Article  CAS  Google Scholar 

  33. Zhu D, Liu H, Huang Y, Luo X, Mao Y, Liang Z (2022) Study of direct synthesis of DMC from CO2 and methanol on CeO2: theoretical calculation and experiment. Ind Eng Chem Res 61:10804–10817

    Article  CAS  Google Scholar 

  34. Stoian D, Medina F, Urakawa A (2018) Improving the stability of CeO2 catalyst by rare earth metal promotion and molecular insights in the dimethyl carbonate synthesis from CO2 and methanol with 2-Cyanopyridine. ACS Catal 8(4):3181–3193

    Article  CAS  Google Scholar 

  35. Jiang J, Marin CM, Both AK, Cheung CL, Li L, Zeng XC (2021) Formation of dimethyl carbonate via direct esterification of CO2 with methanol on reduced or stoichiometric CeO2(111) and (110) surfaces. Phys Chem Chem Phys 23(30):16150–16156

    Article  CAS  PubMed  Google Scholar 

  36. Xu J, Long KZ, Wu F, Xue B, Li YX, Cao Y (2014) Efficient synthesis of dimethyl carbonate via transesterification of ethylene carbonate over a new mesoporous ceria catalyst. Appl Catal A Gen 484:1–7

    Article  CAS  Google Scholar 

  37. Liu B, Li C, Zhang G, Yao X, Chuang SS, Li Z (2018) Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catal 8(11):10446–10456

    Article  CAS  Google Scholar 

  38. Pu Y, Luo Y, Wei X, Sun J, Li L, Zou W, Dong L (2019) Synergistic effects of Cu2O-decorated CeO2 on photocatalytic CO2 reduction: surface Lewis acid/base and oxygen defect. Appl Catal B Environ 254:580–586

    Article  CAS  Google Scholar 

  39. Jiang YF, Yuan CZ, Xie X, Zhou X, Jiang N, Wang X, Imran M, Xu AW (2017) A novel magnetically recoverable Ni-CeO2-x/Pd nanocatalyst with superior catalytic performance for hydrogenation of styrene and 4-nitrophenol. ACS Appl Mater Interfaces 9(11):9756–9762

    Article  CAS  PubMed  Google Scholar 

  40. Cao XC, Long F, Zhai QL, Zhao JP, Xu JM, Jiang JC (2021) Heterogeneous Ni and MoOx co-loaded CeO2 catalyst for the hydrogenation of fatty acids to fatty alcohols under mild reaction conditions. Fuel 298:120829

    Article  CAS  Google Scholar 

  41. Phokha S, Limwichean S, Horprathum M, Patthanasettakul V, Chananonnawathorn C, Eiamchai P, Chanlek N, Maensiri S (2020) Effect of annealing temperature on the structural and magnetic properties of CeO2 thin films. Thin Solid Films 704:138001

    Article  CAS  Google Scholar 

  42. Huang Y, Long B, Tang M, Rui Z, Balogun MS, Tong Y, Ji H (2016) Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Appl Catal B Environ 181:779–787

    Article  CAS  Google Scholar 

  43. Magureanu M, Mandache NB, Gherendi F, Rizescu C, Cojocaru B, Primo A, Garcia H, Parvulescu VI (2021) Improvement of catalytic activity of graphene oxide by plasma treatment. Catal Today 366:2–9

    Article  CAS  Google Scholar 

  44. Spanier JE, Robinson RD, Zheng F, Chan SW, Herman IP (2001) Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering. Phys Rev B 64(24):245407

    Article  Google Scholar 

  45. Wu ZL, Li MJ, Howe J, Meyer HM, Overbury SH (2010) Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 26(21):16595–16606

    Article  CAS  PubMed  Google Scholar 

  46. Xu YX, Wang F, Liu XC, Liu Y, Luo MF, Teng BT, Fan MH, Liu XN (2019) Resolving a decade-long question of oxygen defects in Raman spectra of ceria-based catalysts at atomic level. J Phys Chem C 123:18889–18894

    Article  CAS  Google Scholar 

  47. Daniel M, Loridant S (2012) Probing reoxidation sites by in situ Raman spectroscopy: differences between reduced CeO2 and Pt/CeO2. J Raman Spectrosc 43(9):1312–1319

    Article  CAS  Google Scholar 

  48. Kuan WF, Yu WY, Tu FY, Chung CH, Chang YC, Lin MM, Yu TH, Chen LJ (2022) Facile reflux preparation of defective mesoporous ceria nanorod with superior catalytic activity for direct carbon dioxide conversion into dimethyl carbonate. Chem Eng J 430(1):132941

    Article  CAS  Google Scholar 

  49. Wang Z, Huang Z, Brosnahan JT, Zhang S, Guo Y, Guo Y, Wang L, Wang Y, Zhan W (2019) Ru/CeO2 catalyst with optimized CeO2 support morphology and surface facets for propane combustion. Environ Sci Technol 53(9):5349–5358

    Article  CAS  PubMed  Google Scholar 

  50. Knoblauch N, Simon H, Schmucker M (2017) Chemically induced volume change of CeO2-delta and nonstoichiometric phases. Solid State Ion 301:43–52

    Article  CAS  Google Scholar 

  51. Honda M, Tamura M, Nakagawa Y, Nakao K, Suzuki K, Tomishige K (2014) Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: scope and mechanistic studies. J Catal 318:95–107

    Article  CAS  Google Scholar 

  52. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  53. Ganduglia-Pirovano MV, Da Silva JL, Sauer J (2009) Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2 (111). Phys Rev Lett 102(2):026101

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (U1832165, 22102001, 21976001), Anhui Natural Science Foundation (2108085QB48, 2008085QB85), Higher Education Natural Science Foundation of Anhui Province (KJ2021A0029, KJ2021A0027), Key Research and Development Program of Anhui Province (202004a05020015, 006233172019), Startup Foundation of Anhui University (S020318008/010) and Foundation of School of Chemistry and Chemical Engineering of Anhui University.

Author information

Authors and Affiliations

Authors

Contributions

J-qB: formal analysis, investigation, and writing–original draft. LL: formal analysis, investigation, and writing–original draft. JL: DFT calculation. QW: writing–review and editing, and funding acquisition. YS: Manuscript revision, discussion. QC: Manuscript revision, discussion. MC: investigation, discussion. SS: supervision and writing–review and editing, and funding acquisition.

Corresponding authors

Correspondence to Jiuyi Liu, Qi Wang or Song Sun.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4978 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Jq., Lv, L., Liu, J. et al. Control of CeO2 Defect Sites for Photo- and Thermal- Synergistic Catalysis of CO2 and Methanol to DMC. Catal Lett 153, 3209–3218 (2023). https://doi.org/10.1007/s10562-022-04235-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04235-5

Keywords

Navigation