Skip to main content
Log in

One-Pot Synthesis of Carboxymethylcellulose-Templated Copper-NPs for Heterocatalytic Huisgen-Click Reactions on Lignocellulosic Bamboo Slices

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We demonstrated the one-pot synthesis of copper nanoparticles (mainly as Cu0; CuNPs) mediated by carboxymethylcellulose in water and their heterocatalytic activity when supported on lignocellulosic bamboo slices (CuNPs-BSs). The real-time monitoring of CuNPs formation was performed by time-domain NMR under different temperatures and concentrations of copper precursor. Several 1,4-disubstituted 1,2,3-triazoles were synthesized in organic and aqueous solution at 70 °C. The unprecedented CuNPs-BSs were reused several times with minimal leaching (1.14 ppm) of the copper nanocatalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Martins GBC, Dos Santos MR, Rodrigues MVR, Sucupira RR, Meneghetti L, Monteiro AL, Suarez PAZ (2017) Cellulose oxidation and the use of carboxyl cellulose metal complexes in heterogeneous catalytic systems to promote suzuki-miyaura coupling and C−O bond formation reaction. J Braz Chem Soc 28:2064–2072. https://doi.org/10.21577/0103-5053.20170051

    Article  CAS  Google Scholar 

  2. Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374. https://doi.org/10.1021/acs.chemrev.6b00225

    Article  PubMed  CAS  Google Scholar 

  3. Testa ML, Tummino ML (2021) Lignocellulose biomass as a multifunctional tool for sustainable catalysis and chemicals: an overview. Catalysts 11:125. https://doi.org/10.3390/catal11010125

    Article  CAS  Google Scholar 

  4. Kuan C-M, York RL, Cheng C-M (2016) Lignocellulose-based analytical devices: bamboo as an analytical platform for chemical detection. Sci Rep 5:18570. https://doi.org/10.1038/srep18570

    Article  CAS  Google Scholar 

  5. Pandoli OG, Neto RJG, Oliveira NR, Fingolo AC, Corrêa CC, Ghavami K, Strauss M, Santhiago M (2020) Ultra-highly conductive hollow channels guided by a bamboo bio-template for electric and electrochemical devices. J Mater Chem A 8:4030–4039. https://doi.org/10.1039/C9TA13069A

    Article  CAS  Google Scholar 

  6. Goldhahn C, Taut JA, Schubert M, Burgert I, Chanana M (2020) Enzyme immobilization inside the porous wood structure: a natural scaffold for continuous-flow biocatalysis. RSC Adv 10:20608–20619. https://doi.org/10.1039/c9ra10633b

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Palma BG, Raquel RA, Rodrigo RO, Pandoli OG (2020) Immobilization of lipases on lignocellulosic bamboo powder for biocatalytic transformations in batch and continuous flow. Catal Today. https://doi.org/10.1016/j.cattod.2020.04.041

    Article  Google Scholar 

  8. de Sá DS, de Andrade Bustamante R, Rodrigues Rocha CE, da Silva VD, da Rocha Rodrigues EJ, Djenne Buarque Müller C, Ghavami K, Massi A, Ginoble Pandoli O (2019) Fabrication of lignocellulose-based microreactors: copper-functionalized bamboo for continuous-flow CuAAC click reactions. ACS Sustain Chem Eng 7:3267–3273. https://doi.org/10.1021/acssuschemeng.8b05273

    Article  CAS  Google Scholar 

  9. Durkin DP, Ye T, Larson EG, Haverhals LM, Livi KJT, De Long HC, Trulove PC, Fairbrother DH, Shuai D (2016) Lignocellulose fiber- and welded fiber- supports for palladium-based catalytic hydrogenation: a natural fiber welding application for water treatment. ACS Sustain Chem Eng 4:5511–5522. https://doi.org/10.1021/acssuschemeng.6b01250

    Article  CAS  Google Scholar 

  10. Nador F, Volpe MA, Alonso F, Feldhoff A, Kirschning A, Radivoy G (2013) Copper nanoparticles supported on silica coated maghemite as versatile, magnetically recoverable and reusable catalyst for alkyne coupling and cycloaddition reactions. Appl Catal A 455:39–45. https://doi.org/10.1016/j.apcata.2013.01.023

    Article  CAS  Google Scholar 

  11. Veerakumar P, Velayudham M, Lu KL, Rajagopal S (2011) Highly dispersed silica-supported nanocopper as an efficient heterogeneous catalyst: application in the synthesis of 1,2,3-triazoles and thioethers. Catal Sci Technol 1:1512–1525. https://doi.org/10.1039/c1cy00300c

    Article  CAS  Google Scholar 

  12. Lee BS, Yi M, Chu SY, Lee JY, Kwon HR, Lee KR, Kang D, Kim WS, Bin Lim H, Lee J, Youn HJ, Chi DY, Hur NH (2010) Copper nitride nanoparticles supported on a superparamagnetic mesoporous microsphere for toxic-free click chemistry. Chem Commun 46:3935–3937. https://doi.org/10.1039/c001255f

    Article  CAS  Google Scholar 

  13. Jena PK, Brocchi EA, Motta MS (2001) In-situ formation of Cu-Al2O3 nano-scale composites by chemical routes and studies on their microstructures. Mater Sci Eng A 313:180–186. https://doi.org/10.1016/S0921-5093(00)01998-5

    Article  Google Scholar 

  14. Kantam ML, Jaya VS, Sreedhar B, Rao MM, Choudary BM (2006) Preparation of alumina supported copper nanoparticles and their application in the synthesis of 1,2,3-triazoles. J Mol Catal A 256:273–277. https://doi.org/10.1016/j.molcata.2006.04.054

    Article  CAS  Google Scholar 

  15. Park IS, Kwon MS, Kim Y, Lee JS, Park J (2008) Heterogeneous copper catalyst for the cycloaddition of azides and alkynes without additives under ambient conditions. Org Lett 10:497–500. https://doi.org/10.1021/ol702790w

    Article  PubMed  CAS  Google Scholar 

  16. Mitrofanov AY, Murashkina AV, Martín-García I, Alonso F, Beletskaya IP (2017) Formation of C-C, C–S and C–N bonds catalysed by supported copper nanoparticles. Catal Sci Technol 7:4401–4412. https://doi.org/10.1039/C7CY01343D

    Article  CAS  Google Scholar 

  17. Seidel A, Loosj J, Boddenberg B (1999) Copper nanoparticles in zeolite Y. J Mater Chem 9:2495–2498. https://doi.org/10.1039/a902806d

    Article  CAS  Google Scholar 

  18. Chassaing S, Sido ASS, Alix A, Kumarraja M, Pale P, Sommer J (2008) “Click chemistry” in zeolites: copper(I) zeolites as new heterogeneous and ligand-free catalysts for the huisgen [3+2] cycloaddition. Chem Eur J 14:6713–6721. https://doi.org/10.1002/chem.200800479

    Article  PubMed  CAS  Google Scholar 

  19. Chassaing S, Kumarraja M, Sido ASS, Pale P, Sommer J (2007) Click chemistry in CuI-zeolites: the Huisgen [3 + 2]-cycloaddition. Org Lett 9:883–886. https://doi.org/10.1021/ol0631152

    Article  PubMed  CAS  Google Scholar 

  20. Sarkar A, Mukherjee T, Kapoor S (2008) PVP-stabilized copper nanoparticles: a reusable catalyst for “click” reaction between terminal alkynes and azides in nonaqueous solvents. J Phys Chem C 112:3334–3340. https://doi.org/10.1021/jp077603i

    Article  CAS  Google Scholar 

  21. Sirion U, Yu JB, Byoung SL, Dae YC (2008) Ionic polymer supported copper(I): a reusable catalyst for Huisgen’s 1,3-dipolar cycloaddition. Synlett. https://doi.org/10.1055/s-2008-1078245

    Article  Google Scholar 

  22. Barot N, Shaikh T, Kaur H (2017) A PLA-TiO2 particle brush as a novel support for CuNPs: a catalyst for the fast sequential reduction and: N -arylation of nitroarenes. New J Chem 41:5347–5354. https://doi.org/10.1039/c6nj04007a

    Article  CAS  Google Scholar 

  23. Alonso F, Moglie Y, Radivoy G, Yus M (2011) Click chemistry from organic halides, diazonium salts and anilines in water catalysed by copper nanoparticles on activated carbon. Org Biomol Chem 9:6385–6395. https://doi.org/10.1039/c1ob05735a

    Article  PubMed  CAS  Google Scholar 

  24. Alonso F, Moglie Y, Radivoy G, Yus M (2010) Multicomponent synthesis of 1,2,3-triazoles in water catalyzed by copper nanoparticles on activated carbon. Adv Synth Catal 352:3208–3214. https://doi.org/10.1002/adsc.201000637

    Article  CAS  Google Scholar 

  25. Musa A, Ahmad MB, Hussein MZ, Mohd Izham S, Shameli K, Abubakar Sani H (2016) Synthesis of nanocrystalline cellulose stabilized copper nanoparticles. J Nanomater. https://doi.org/10.1155/2016/2490906

    Article  Google Scholar 

  26. Hajipour AR, Check M, Khorsandi Z (2017) Copper immobilized on magnetite nanoparticles coated with ascorbic acid: An efficient and reusable catalyst for C─N and C─O cross-coupling reactions. Appl Organomet Chem 31:1–9. https://doi.org/10.1002/aoc.3769

    Article  CAS  Google Scholar 

  27. Alonso F, Melkonian T, Moglie Y, Yus M (2011) Homocoupling of terminal alkynes catalysed by ultrafine copper nanoparticles on titania. Eur J Org Chem. https://doi.org/10.1002/ejoc.201001735

    Article  Google Scholar 

  28. Niu F, Jiang Y, Song W (2010) In situ loading of Cu2O nanoparticles on a hydroxyl group rich TiO2 precursor as an excellent catalyst for the Ullmann reaction. Nano Res 3:757–763. https://doi.org/10.1007/s12274-010-0043-3

    Article  CAS  Google Scholar 

  29. Shah AP, Sharma AS, Jain S, Shimpi NG (2018) Microwave assisted one pot three component synthesis of propargylamine, tetra substituted propargylamine and pyrrolo[1,2- a ]quinolines using CuNPs@ZnO–PTh as a heterogeneous catalyst. New J Chem 42:8724–8737. https://doi.org/10.1039/C8NJ00410B

    Article  CAS  Google Scholar 

  30. Gutierrez V, Mascaró E, Alonso F, Moglie Y, Radivoy G (2015) Direct synthesis of β-ketophosphonates and vinyl phosphonates from alkenes or alkynes catalyzed by CuNPs/ZnO. RSC Adv 5:65739–65744. https://doi.org/10.1039/c5ra10223e

    Article  CAS  Google Scholar 

  31. Li H, Li C, Bai J, Zhang C, Sun W (2014) Carbon nanofiber supported copper nanoparticles catalyzed Ullmann-type coupling reactions under ligand-free conditions. RSC Adv 4:48362–48367. https://doi.org/10.1039/c4ra07184k

    Article  CAS  Google Scholar 

  32. Singh AS, Shendage SS, Nagarkar JM (2014) Electrochemical synthesis of copper nanoparticles on nafion-graphene nanoribbons and its application for the synthesis of diaryl ethers. Tetrahedron Lett 55:4917–4922. https://doi.org/10.1016/j.tetlet.2014.06.110

    Article  CAS  Google Scholar 

  33. Puthiaraj P, Ahn WS (2016) Synthesis of copper nanoparticles supported on a microporous covalent triazine polymer: an efficient and reusable catalyst for O-arylation reaction. Catal Sci Technol 6:1701–1709. https://doi.org/10.1039/c5cy01590a

    Article  CAS  Google Scholar 

  34. Pachón LD, Van Maarseveen JH, Rothenberg G (2005) Click chemistry: copper clusters catalyse the cycloaddition of azides with terminal alkynes. Adv Synth Catal 347:811–815. https://doi.org/10.1002/adsc.200404383

    Article  CAS  Google Scholar 

  35. Zhang R, Liu J, Wang S, Niu J, Xia C, Sun W (2011) Magnetic CuFe2O4 nanoparticles as an efficient catalyst for C-O cross-coupling of phenols with aryl halides. ChemCatChem 3:146–149. https://doi.org/10.1002/cctc.201000254

    Article  CAS  Google Scholar 

  36. Gou L, Murphy CJ (2003) Solution-phase synthesis of Cu2O nanocubes. Nano Lett 3:231–234. https://doi.org/10.1021/nl0258776

    Article  CAS  Google Scholar 

  37. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482

    Article  PubMed  CAS  Google Scholar 

  38. Sharma AS, Sharma VS, Kaur H, Varma RS (2020) Supported heterogeneous nanocatalysts in sustainable, selective and eco-friendly epoxidation of olefins. Green Chem 22:5902–5936. https://doi.org/10.1039/D0GC01927E

    Article  CAS  Google Scholar 

  39. Neumann S, Biewend M, Rana S, Binder WH (2020) The CuAAC: principles, homogeneous and heterogeneous catalysts, and novel developments and applications. Macromol Rapid Commun. https://doi.org/10.1002/marc.201900359

    Article  PubMed  Google Scholar 

  40. Kock FVC, Machado MP, Athayde GPB, Colnago LA, Barbosa LL (2018) Quantification of paramagnetic ions in solution using time domain NMR. PROS and CONS to optical emission spectrometry method. Microchem J 137:204–207. https://doi.org/10.1016/j.microc.2017.10.013

    Article  CAS  Google Scholar 

  41. Cobra PF, Gomes BF, Mitre CIN, Barbosa LL, Marconcini LV, Colnago LA (2015) Measuring the solubility product constant of paramagnetic cations using time-domain nuclear magnetic resonance relaxometry. Microchem J 121:14–17. https://doi.org/10.1016/j.microc.2015.02.002

    Article  CAS  Google Scholar 

  42. Bemetz J, Wegemann A, Saatchi K, Haase A, Häfeli UO, Niessner R, Gleich B, Seidel M (2018) Microfluidic-based synthesis of magnetic nanoparticles coupled with miniaturized NMR for online relaxation studies. Anal Chem. https://doi.org/10.1021/acs.analchem.8b02374

    Article  PubMed  Google Scholar 

  43. Kock FVC, Colnago LA (2015) Rapid and simultaneous relaxometric methods to study paramagnetic ion complexes in solution: an alternative to spectrophotometry. Microchem J 122:144–148. https://doi.org/10.1016/j.microc.2015.05.003

    Article  CAS  Google Scholar 

  44. Gomes BF, Burato JSDS, Silva Lobo CM, Colnago LA (2016) Use of the relaxometry technique for quantification of paramagnetic ions in aqueous solutions and a comparison with other analytical methods. Int J Anal Chem. https://doi.org/10.1155/2016/8256437

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nunes LMS, Cobra PF, Cabeça LF, Barbosa LL, Colnago LA (2012) In situ quantification of Cu(II) during an electrodeposition reaction using time-domain NMR relaxometry. Anal Chem 84:6351–6354. https://doi.org/10.1021/ac3012889

    Article  PubMed  CAS  Google Scholar 

  46. Gomes BF, Nunes LMS, Lobo CMS, Carvalho AS, Cabeça LF, Colnago LA (2015) In situ analysis of copper electrodeposition reaction using unilateral NMR sensor. J Magn Reson 261:83–86. https://doi.org/10.1016/j.jmr.2015.09.018

    Article  PubMed  CAS  Google Scholar 

  47. Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679–712. https://doi.org/10.1103/PhysRev.73.679

    Article  CAS  Google Scholar 

  48. da Rocha Rodrigues EJ, Neto RPC, Sebastião PJO, Tavares MIB (2018) Real-time monitoring by proton relaxometry of radical polymerization reactions of acrylamide in aqueous solution. Polym Int 67:675–683. https://doi.org/10.1002/pi.5546

    Article  CAS  Google Scholar 

  49. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691. https://doi.org/10.1063/1.1716296

    Article  CAS  Google Scholar 

  50. Pandoli O, Martins RDS, Romani EC, Paciornik S, Maurício MHDP, Alves HDL, Pereira-Meirelles FV, Luz EL, Koller SML, Valiente H, Ghavami K (2016) Colloidal silver nanoparticles: an effective nano-filler material to prevent fungal proliferation in bamboo. RSC Adv 6:98325–98336. https://doi.org/10.1039/C6RA12516F

    Article  CAS  Google Scholar 

  51. Ginoble Pandoli O, Martins RS, De Toni KLG, Paciornik S, Maurício MHP, Lima RMC, Padilha NB, Letichevsky S, Avillez RR, Rodrigues EJR, Ghavami K (2019) A regioselective coating onto microarray channels of bamboo with chitosan-based silver nanoparticles. J Coat Technol Res 16:999–1011. https://doi.org/10.1007/s11998-018-00175-1

    Article  CAS  Google Scholar 

  52. Hosny WM, Hadi AKA, El-Saied H, Basta AH (1995) Metal chelates with some cellulose derivatives. Part III. Synthesis and structural chemistry of nickel (II) and copper (II) complexes with carboxymethyl cellulose. Polym Int 37:93–96. https://doi.org/10.1002/pi.1995.210370202

    Article  CAS  Google Scholar 

  53. Hebeish AA, El-Rafie MH, Abdel-Mohdy FA, Abdel-Halim ES, Emam HE (2010) Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym 82:933–941. https://doi.org/10.1016/j.carbpol.2010.06.020

    Article  CAS  Google Scholar 

  54. Ginoble Pandoli O, Martins RS, De Toni KLG, Paciornik S, Maurício MHP, Lima RMC, Padilha NB, Letichevsky S, Avillez RR, Rodrigues EJR, Ghavami K (2019) A regioselective coating onto microarray channels of bamboo with chitosan-based silver nanoparticles. J Coat Technol Res. https://doi.org/10.1007/s11998-018-00175-1

    Article  Google Scholar 

  55. Del Rosso T, Louro SRW, Deepak FL, Romani EC, Zaman Q, Tahir, Pandoli O, Cremona M, Freire Junior FL, De Beule PAA, De St. Pierre T, Aucelio RQ, Mariotto G, Gemini-Piperni S, Ribeiro AR, Landi SM, Magalhães A (2018) Biocompatible Au@Carbynoid/Pluronic-F127 nanocomposites synthesized by pulsed laser ablation assisted CO2 recycling. Appl Surf Sci 441:347–355. https://doi.org/10.1016/j.apsusc.2018.02.007

    Article  CAS  Google Scholar 

  56. Gultekin DH, Gore JC (2005) Temperature dependence of nuclear magnetization and relaxation. J Magn Reson 172:133–141. https://doi.org/10.1016/j.jmr.2004.09.007

    Article  PubMed  CAS  Google Scholar 

  57. Zhang Z, Song P, Zhou J, Chen Y, Lin B, Li Y (2016) Metathesis strategy for the immobilization of copper(II) onto carboxymethylcellulose/Fe3O4 nanohybrid supports: efficient and recoverable magnetic catalyst for the CuAAC reaction. Ind Eng Chem Res 55:12301–12308. https://doi.org/10.1021/acs.iecr.6b03158

    Article  CAS  Google Scholar 

  58. He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of Fe−Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34. https://doi.org/10.1021/ie0610896

    Article  CAS  Google Scholar 

  59. Konradi R, Rühe J (2005) Interaction of poly(methacrylic acid) brushes with metal ions: swelling properties. Macromolecules 38:4345–4354. https://doi.org/10.1021/ma0486804

    Article  CAS  Google Scholar 

  60. Chen L-J, Li G-S, Li L-P (2008) CuO nanocrystals in thermal decomposition of ammonium perchlorate. J Therm Anal Calorim 91:581–587. https://doi.org/10.1007/s10973-007-8496-7

    Article  CAS  Google Scholar 

  61. Le Cerf D, Irinei F, Muller G (1990) Solution properties of gum exudates from Sterculia urens (Karaya gum). Carbohydr Polym 13:375–386. https://doi.org/10.1016/0144-8617(90)90037-S

    Article  Google Scholar 

  62. Gong N, Liu Y, Huang R (2018) Simultaneous adsorption of Cu2+ and acid fuchsin (AF) from aqueous solutions by CMC/bentonite composite. Int J Biol Macromol 115:580–589. https://doi.org/10.1016/j.ijbiomac.2018.04.075

    Article  PubMed  CAS  Google Scholar 

  63. Gholamali I (2020) Facile preparation of carboxymethyl cellulose/Cu bio-nanocomposite hydrogels for controlled release of ibuprofen. Regen Eng Transl Med 6:115–124. https://doi.org/10.1007/s40883-019-00133-2

    Article  CAS  Google Scholar 

  64. Naumkin AV, Kraut-Vass A, Gaarenstroom SW (2012) NIST X-ray photoelectron spectroscopy, NIST standard reference database 20, version 4.1. Natl Inst Stand Technol. https://doi.org/10.18434/T4T88K

    Article  Google Scholar 

  65. Goh SW, Buckley AN, Lamb RN, Rosenberg RA, Moran D (2006) The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air. Geochim Cosmochim Acta 70:2210–2228. https://doi.org/10.1016/j.gca.2006.02.007

    Article  CAS  Google Scholar 

  66. Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898. https://doi.org/10.1016/j.apsusc.2010.07.086

    Article  CAS  Google Scholar 

  67. Poulston S, Parlett PM, Stone P, Bowker M (1996) Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES, surface and interface. Analysis 24:811–820. https://doi.org/10.1002/(SICI)1096-9918(199611)24:12%3c811::AID-SIA191%3e3.0.CO;2-Z

    Article  CAS  Google Scholar 

  68. Alonso F, Moglie Y, Radivoy G, Yus M (2010) Unsupported copper nanoparticles in the 1,3-dipolar cycloaddition of terminal alkynes and azides. Eur J Org Chem 2010:1875–1884. https://doi.org/10.1002/ejoc.200901446

    Article  CAS  Google Scholar 

  69. Chassaing S, Bénéteau V, Pale P (2016) When CuAAC “click chemistry” goes heterogeneous, catalysis. Sci Technol 6:923–957. https://doi.org/10.1039/C5CY01847A

    Article  CAS  Google Scholar 

  70. Lipshutz BH, Taft BR (2006) Heterogeneous copper-in-charcoal-catalyzed click chemistry. Angew Chem Int Ed 45:8235–8238. https://doi.org/10.1002/anie.200603726

    Article  CAS  Google Scholar 

  71. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064. https://doi.org/10.1021/jo011148j

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Serrapilheira Institute (Grant Number Serra-1709-17482), Conselho Nacional de Desenvolvimento Científico e Tecnologico-Brasil (CNPq) (458302/2013-9), Fundação Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (E-26/010.100622/2018, E-26/010.001646/2019, SEI-260003/001227/2020 and E-26/010.000980/2019) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. PhD student D.S.d.S. is grateful to FAPERJ for scholar fellowships. We thank Prof. Tatiana D. Saint’Pierre and Rafael Rocha for the assistance during the ICP-MS analysis. We are thankful for the access to the facilities for electron microscopy of LabNano (CBPF), Brazil.

Author information

Authors and Affiliations

Authors

Contributions

DSS, EJRR, NMS, AGV, SP, AM, OGP designed, performed, evaluated, and discussed the experiments. OGP, DSS, ER wrote the paper. All authors reviewed the manuscript and agreed to the final version.

Corresponding author

Correspondence to Omar Ginoble Pandoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3396 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sá, D.S., da Rocha Rodrigues, E.J., Suguihiro, N.M. et al. One-Pot Synthesis of Carboxymethylcellulose-Templated Copper-NPs for Heterocatalytic Huisgen-Click Reactions on Lignocellulosic Bamboo Slices. Catal Lett 152, 3558–3575 (2022). https://doi.org/10.1007/s10562-022-03923-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03923-6

Keywords

Navigation