Skip to main content

Advertisement

Log in

Preparation of NiO by Simple Heat Treatment Method and its Application in Photocatalytic Water Splitting

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

As a cocatalyst, NiO has shown a great potential in facilitating photocatalytic water splitting for hydrogen evolution. In this work, a new photocatalyst thin film (Ni/NiO/NaTaO3: La) is successfully prepared to optimize the performance of the photocatalytic water splitting. The NiO cocatalyst is prepared by a simple heat treatment method. An efficient heterojunction can be formed between NiO and NaTaO3, which is beneficial to the transmission and separation of photogenic carriers. The photocatalytic activity of Ni/NiO/NaTaO3: La is 10.83 µmol/h cm2 under high-pressure mercury lamp irradiation, which is two times higher than that of Ni/NaTaO3: La. In addition, the Ni/NiO/NaTaO3: La thin film is treated under different temperatures. It can be observed that annealing temperature has a great influence on the photocatalytic activity of Ni/NiO/NaTaO3: La thin film. When the sample annealed in 700 °C, the photocatalytic activity for water splitting is the highest, indicating the temperatures have an effect on the formation of NiO and photocatalytic efficiency. Our photocatalyst thin film (Ni/NiO/NaTaO3: La) provides sustainable photocatalysts by taking both photocatalyst stability and repeated utilization into consideration. More importantly, this work also provides a new insight into the synthesis of Ni/NiO/NaTaO3: La thin film, which has a great application prospects in the field of photocatalytic water splitting.

Graphical Abstract

NiO cocatalyst is prepared by a simple heat treatment method and this novel photocatalyst thin film (Ni/NiO/NaTaO3: La) is successfully prepared to optimize the performance of the photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R (2011) Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 133:11054–11057

    Article  CAS  PubMed  Google Scholar 

  2. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Let 1:2655–2661

    Article  CAS  Google Scholar 

  3. Pan L, Kim JH, Mayer MT, Son MK Ummadisingu A et al (2018) Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat Catal 1:412–420

    Article  CAS  Google Scholar 

  4. Kohno M, Ogura S, Sato K, Inoue Y (1997) Properties of photocatalysts with tunnel structures: formation of a surface lattice O—radical by the UV irradiation of BaTi4O9 with a pentagonal-prism tunnel structure. Chem Phys Lett 267:72–76

    Article  CAS  Google Scholar 

  5. Domen K, Kudo A, Onishi T (1986) Photocatalytic decomposition of water into H2 and O2, over NiO-SrTiO3, powder. 1. Structure of the catalyst. J Phys Chem 90:292–295

    Article  CAS  Google Scholar 

  6. Xu D, Yang S, Jin Y, Chen M, Fan W et al (2015) Ag-decorated ATaO3 (A = K, Na) nanocube plasmonic photocatalysts with enhanced photocatalytic water-splitting properties. Langmuir 31:9694–9699

    Article  CAS  PubMed  Google Scholar 

  7. Balaz S, Porter SH, Woodward PM, Brillson LJ (2013) Electronic structure of tantalum oxynitride perovskite photocatalysts. Chem Mater 25:3337–3343

    Article  CAS  Google Scholar 

  8. Kudo A, Kato H, Nakagawa S (2000) Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity. J Phys Chem B 104:571–575

    Article  CAS  Google Scholar 

  9. Serrano DP, Calleja G, Pizarro P, Gálvez P (2014) Enhanced photocatalytic hydrogen production by improving the Pt dispersion over mesostructured TiO2. Int J Hydrog Energy 39:4812–4819

    Article  CAS  Google Scholar 

  10. Takahara Y, Kondo JN, Takata T, Lu D, Domen K (2001) Mesoporous tantalum oxide. 1. Characterization and photocatalytic activity for the overall water decomposition. Chem Mater 13(4):1194–1199

    Article  CAS  Google Scholar 

  11. Kato H, Kudo A (2001) Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J Phys Chem B 105(19):4285–4292

    Article  CAS  Google Scholar 

  12. Kato H, Kobayashi H, Kudo A (2002) Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure. J Phys Chem B 106:12441–12447

    Article  CAS  Google Scholar 

  13. Kato H, Kudo A (1998) New tantalate photocatalysts for water decomposition into H2 and O2. Chem Phys Lett 295:487–492

    Article  CAS  Google Scholar 

  14. Kato H, Kudo A (1999) Photocatalytic decomposition of pure water into H2 and O2 over SrTa2O6 prepared by a flux method. Chem Lett 11:1207–1208

    Article  Google Scholar 

  15. Ikeda S, Fubuki M, Takahara YK, Matsumura M (2006) Photocatalytic activity of hydrothermally synthesized tantalate pyrochlores for overall water splitting. Appl Catal A 300:186–190

    Article  CAS  Google Scholar 

  16. Shimizu KI, Itoh S, Hatamachi T, Kodama T, Sato M et al (2005) Photocatalytic water splitting on Ni-intercalated ruddlesden—popper tantalate H2La2/3Ta2O7. Chem Mater 17:5161–5166

    Article  CAS  Google Scholar 

  17. Zhang Q, Li Z, Wang S, Li R, Zhang X et al (2016) Effect of redox cocatalysts location on photocatalytic overall water splitting over cubic NaTaO3 semiconductor crystals exposed with equivalent facets. ACS Catal 6:2182–2191

    Article  CAS  Google Scholar 

  18. An L, Sasaki T, Weidler PG, Wöll C, Ichikuni N et al (2018) Local environment of strontium cations activating NaTaO3 photocatalysts. ACS Catal 8:880–885

    Article  CAS  Google Scholar 

  19. Meyer T, Priebe JB, Silva ROD, Peppel T, Junge H et al (2014) Advanced charge utilization from NaTaO3 photocatalysts by multilayer reduced graphene oxide. Chem Mater 26:4705–4711

    Article  CAS  Google Scholar 

  20. Iwase A, Kato H, Kudo A (2009) The effect of alkaline earth metal ion dopants on photocatalytic water splitting by NaTaO3 powder. Chem Sus Chem 2:873–877

    Article  CAS  Google Scholar 

  21. Kanhere P, Zheng J, Chen Z (2012) Visible light driven photocatalytic hydrogen evolution and photophysical properties of Bi3+ doped NaTaO3. Int J Hydrog Energy 37:4889–4896

    Article  CAS  Google Scholar 

  22. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125(10):3082–3089

    Article  CAS  PubMed  Google Scholar 

  23. Kanhere PD, Zheng J, Chen Z (2011) Site specific optical and photocatalytic properties of Bi-doped NaTaO3. J Phys Chem C 115(23):11846–11853

    Article  CAS  Google Scholar 

  24. Maruyama M, Iwase A, Kato H, Kudo A, Onishi H (2009) Time-resolved infrared absorption study of NaTaO3 photocatalysts doped with alkali earth metals. J Phys Chem C 113:13918–13923

    Article  CAS  Google Scholar 

  25. Su Y, Peng L, Guo J, Huang S, Lv L (2014) Tunable optical and photocatalytic performance promoted by nonstoichiometric control and site-selective codoping of trivalent ions in NaTaO3. J Phys Chem C 118(20):10728–10739

    Article  CAS  Google Scholar 

  26. Yamakata A, Ishibashi T, Kato H, Kudo A, Onishi H (2003) Photodynamics of NaTaO3 catalysts for efficient water splitting. J Phys Chem B 107:14383–14387

    Article  CAS  Google Scholar 

  27. Kudo A, Kato H (2000) Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem Phys Lett 331(5):373–377

    Article  CAS  Google Scholar 

  28. Tsai CW, Chen HM, Liu RS, Asakura K, Chan TS (2011) Ni @ NiO core–shell structure-modified nitrogen-doped InTaO4 for solar-driven highly efficient CO2 reduction to methanol. J Phys Chem C 115:10180–10186

    Article  CAS  Google Scholar 

  29. Hamid S, Dillert R, Bahnemann DW (2018) Photocatalytic reforming of aqueous acetic acid into molecular hydrogen and hydrocarbons over co-catalyst-loaded TiO2: shifting the product distribution. J Phys Chem C 122:12792–12809

    Article  CAS  Google Scholar 

  30. Berto TF, Sanwald KE, Byers JP, Browning ND, Gutierrez OY et al (2016) Enabling overall water splitting on photocatalysts by co-covered noble metal co-catalysts. J Phys Chem Lett 7:4358–4362

    Article  CAS  PubMed  Google Scholar 

  31. O’Keefe WK, Liu Y, Sasges MR, Wong MS, Fu H et al (2014) Photocatalytic hydrodechlorination of trace carbon tetrachloride (CCl4) in aqueous medium. Ind Eng Chem Res 53:9600–9607

    Article  CAS  Google Scholar 

  32. Phivilay SP, Puretzky AA, Domen K, Wachs IE (2013) Nature of catalytic active sites present on the surface of advanced bulk tantalum mixed oxide photocatalysts. ACS Catal 3:2920–2929

    Article  CAS  Google Scholar 

  33. Domen K, Naito S, Soma M, Onishi T, Tamaru K (1980) Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. J Chem Soc Chem Commun. https://doi.org/10.1039/C39800000543

    Article  Google Scholar 

  34. Townsend TK, Browningab ND, Osterloh FE (2012) Overall photocatalytic water splitting with NiOx-SrTiO3-a revised mechanism. Energy Environ Sci 5(11):9543–9550

    Article  CAS  Google Scholar 

  35. Wang J, Liu S, Meng X, Zhu G, Shi M et al (2017) Vertically aligned CdTe nanorods array for novel three-dimensional heterojunction solar cells on Ni substrates. Electrochim Acta 258:858–865

    Article  CAS  Google Scholar 

  36. Mallows J, Planells M, Thakare V, Bhosale R, Ogale S et al (2015) p-Type NiO hybrid visible photodetector. ACS Appl Mater Interfaces 7:27597–27601

    Article  CAS  PubMed  Google Scholar 

  37. Dare-Edwards M, Goodenough JB, Hamnett A, Nicholson ND (1981) Photoelectrochemistry of nickel(II) oxide. J Chem Soc Faraday Trans 77(4):643–661

    Article  CAS  Google Scholar 

  38. Li X, Yao H, Lv P, Ding D, Liu L et al (2016) A novel thin film photocatalysts of Ti/TNT/N-I-P/NaTaO3 for water splitting to liberate H2 and O2 separately. Curr Appl Phys 16:1144–1151

    Article  Google Scholar 

  39. Shimura K, Kato S, Yoshida T, Itoh H, Hattori T (2010) Photocatalytic steam reforming of methane over sodium tantalate. J Phys Chem C 114(8):3493–3503

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Yang.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Zhu, G., Wang, J. et al. Preparation of NiO by Simple Heat Treatment Method and its Application in Photocatalytic Water Splitting. Catal Lett 149, 1680–1689 (2019). https://doi.org/10.1007/s10562-019-02692-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02692-z

Keywords

Navigation