Skip to main content

Advertisement

Log in

In Situ Fabrication of Electrospun Carbon Nanofibers–Binary Metal Sulfides as Freestanding Electrode for Electrocatalytic Water Splitting

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

In search of effective and stable bifunctional electrocatalyst for electrocatalytic water splitting is still a major challenge for the highly efficient H2 production. Here, we reported a facile strategy to design high-indexed Cu3Pd13S7 nanoparticles (NPs) in situ synthesized on the three-dimensional (3D) carbon nanofibers (CNFs) by combining electrospinning and chemical vapor deposition (CVD) technology. The high-index facets with abundant active sites, the 3D architecture CNFs with high specific surface area and synergistic effect of Cu–Pd–S bonds with strong electron couplings together promote the electrocatalytic performance. The Cu3Pd13S7/CNFs shows excellent electrocatalytic activity with low overpotentials of 52 mV (10 mA cm−2) for hydrogen evolution reaction (HER) and 240 mV (10 mA cm−2) for oxygen evolution reaction (OER). The excellent protection of Cu3Pd13S7 by CNFs from aggregation and electrolyte corrosion lead to the high stability of Cu3Pd13S7/CNFs under acidic and alkaline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488:294–303.

    Article  CAS  Google Scholar 

  2. Goodenough JB. Electrochemical energy storage in a sustainable modern society. Energy Environ Sci. 2014;7(1):14–8.

    Article  CAS  Google Scholar 

  3. Zhai P, Zhang Y, Wu Y, Gao J, Zhang B, Cao S, Zhang Y, Li Z, Sun L, Hou J. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat Commun. 2020;11:5462.

    Article  CAS  Google Scholar 

  4. Sultan S, Tiwari JN, Singh AN, Zhumagali S, Ha M, Myung CW, Thangavel P, Kim KS. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv Energy Mater. 2019;9:1900624.

    Article  Google Scholar 

  5. Wang J, Gao Y, Chen D, Liu J, Zhang Z, Shao Z, Ciucci F. Water splitting with an enhanced bifunctional double perovskite. ACS Catal. 2018;8(1):364–71.

    Article  CAS  Google Scholar 

  6. Wang JG, Hua W, Li M, Liu H, Shao M, Wei B. Structurally engineered hyperbranched NiCoP arrays with superior electrocatalytic activities toward highly efficient overall water splitting. ACS Appl Mater Interfaces. 2018;10(48):41237–45.

    Article  CAS  Google Scholar 

  7. Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2012;2(8):1765–72.

    Article  CAS  Google Scholar 

  8. Feng LL, Yu G, Wu Y, Li GD, Li H, Sun Y, Zou X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc. 2015;137(44):14023–6.

    Article  CAS  Google Scholar 

  9. Wen Y, Zhu H, Zhang L, Zhang S, Zhang M, Du M. Activating MoS2 by interface engineering for efficient hydrogen evolution catalysis. Mater Res Bull. 2019;112:46–52.

    Article  CAS  Google Scholar 

  10. Wu A, Xie Y, Ma H, Tian C, Gu Y, Yan H, Zhang X, Yang G, Fu H. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy. 2018;44:353–63.

    Article  CAS  Google Scholar 

  11. Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y. Nano architectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv Mater. 2019;31:1807134.

    Article  Google Scholar 

  12. Hu Q, Li G, Han Z, Wang Z, Huang X, Yang H, Zhang Q, Liu J, He C. Recent progress in the hybrids of transition metals/carbon for electrochemical water splitting. J Mater Chem A. 2019;7(24):14380–90.

    Article  CAS  Google Scholar 

  13. Wen Y, Zhu H, Zhang L, Hao J, Zhang S, Lu S, Zhang M, Du M. Beyond colloidal synthesis: nanofiber reactor to design self-supported core-shell Pd16S7/MoS2/CNFs electrode for efficient and durable hydrogen evolution catalysis. ACS Appl Energy Mater. 2019;2(3):2013–21.

    Article  CAS  Google Scholar 

  14. Reddy DA, Park H, Ma R, Kumar D, Lim M, Kim TK. Heterostructured WS2–MoS2 ultrathin nanosheets integrated on CdS nanorods to promote charge separation and migration and improve solar-driven photocatalytic hydrogen evolution. Chemsuschem. 2017;10(7):1563–70.

    Article  CAS  Google Scholar 

  15. Zhu H, Zhang J, Yanzhang R, Du M, Wang Q, Gao G, Wu J, Wu G, Zhang M, Liu B, Yao J, Zhang X. When cubic cobalt sulfide meets layered molybdenum disulfide: a core-shell system toward synergetic electrocatalytic water splitting. Adv Mater. 2015;27:4752–9.

    Article  CAS  Google Scholar 

  16. Zhu H, Gao G, Du M, Zhou J, Wang K, Wu W, Chen X, Li Y, Ma P, Dong W, Duan F, Chen M, Wu G, Wu J, Yang H, Guo S. Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis. Adv Mater. 2018;30:1707301.

    Article  Google Scholar 

  17. Zhang S, Li Y, Zhu H, Lu S, Ma P, Dong W, Duan F, Chen M, Du M. Understanding the role of nanoscale heterointerfaces in core/shell structures for water splitting: covalent bonding interaction boosts the activity of binary transition-metal sulfides. ACS Appl Mater Interfaces. 2020;12(5):6250–61.

    Article  CAS  Google Scholar 

  18. Peng S, Li L, Zhang J, Yan TL, Zhang T, Ji D, Han X, Cheng F, Ramakrishna S. Engineering Co9S8/WS2 array films as bifunctional electrocatalysts for efficient water splitting. J Mater Chem A. 2017;5(44):23361–8.

    Article  CAS  Google Scholar 

  19. Joo J, Kim T, Lee J, Choi S, Lee K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv Mater. 2019;31(14):1806682.

    Article  Google Scholar 

  20. Balogun MS, Huang Y, Qiu W, Yang H, Ji H, Tong Y. Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater Today. 2017;20(8):425–51.

    Article  CAS  Google Scholar 

  21. Wang Y, Yan D, El Hankari S, Zou Y, Wang S. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv Sci. 2018;5(8):1800064.

    Article  Google Scholar 

  22. Qiao Y, Xi Y, Zhuo D, Wang J, Lin S. Qualitative phase analysis system for crystalline mixtures based on X-ray powder diffraction file. Powder Diffr. 2004;19(4):340–6.

    Article  CAS  Google Scholar 

  23. Luo H, Lei H, Yuan Y, Liang Y, Qiu Y, Zhu Z, Wang Z. Engineering ternary copper-cobalt sulfide nanosheets as high-performance electrocatalysts toward oxygen evolution reaction. Catalysts. 2019;9(5):459.

    Article  CAS  Google Scholar 

  24. Diaz-Chao P, Ferrer IJ, Ares JR, Sanchez C. Cubic Pd16S7 as a precursor phase in the formation of tetragonal PdS by sulfuration of Pd thin films. J Phys Chem C. 2009;113(13):5329–35.

    Article  CAS  Google Scholar 

  25. Diao Y, Xie K, Xiong S, Hong X. Insights into Li-S battery cathode capacity fading mechanisms: irreversible oxidation of active mass during cycling. J Electrochem Soc. 2012;159(11):A1816.

    Article  CAS  Google Scholar 

  26. Wang N, Li L, Zhao D, Kang X, Tang Z, Chen S. Graphene composites with cobalt sulfide: efficient trifunctional electrocatalysts for oxygen reversible catalysis and hydrogen production in the same electrolyte. Small. 2017;13(33):1701025.

    Article  Google Scholar 

  27. Li B, Qiao S, Zheng X, Yang X, Cui Z, Zhu Z, Li Z, Liang Y. Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. J Power Sources. 2015;284:68–76.

    Article  CAS  Google Scholar 

  28. Fu Y, Jin W. Facile synthesis of core-shell CuS–Cu2S based nanocomposite for the high-performance glucose detection. Mater Sci Eng C. 2019;105:110–20.

    Article  Google Scholar 

  29. Yang F, Zhang Y, Liu P, Cui Y, Ge X, Jing Q. Pd–Cu alloy with hierarchical network structure as enhanced electrocatalysts for formic acid oxidation. Int J Hydrog Energy. 2016;41(16):6773–80.

    Article  CAS  Google Scholar 

  30. Chen S, Duan J, Jaroniec M, Qiao S. Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv Mater. 2014;26(18):2925–30.

    Article  CAS  Google Scholar 

  31. Ye JY, Jiang YX, Sheng T, Sun S. In-situ FTIR spectroscopic studies of electrocatalytic reactions and processes. Nano Energy. 2016;29:414–27.

    Article  CAS  Google Scholar 

  32. Geng S, Yang W, Yu YS. Building MoS2/S-doped g-C3N4 layered heterojunction electrocatalysts for efficient hydrogen evolution reaction. J Catal. 2019;375:441–7.

    Article  CAS  Google Scholar 

  33. Xiao X, Huang D, Fu Y, Wen M, Jiang X, Lv X, Li M, Gao L, Liu S, Wang M, Zhao C, Shen Y. Engineering NiS/Ni2P heterostructures for efficient electrocatalytic water splitting. ACS Appl Mater Interfaces. 2018;10(5):4689–96.

    Article  CAS  Google Scholar 

  34. Sievers GW, Jensen AW, Quinson J, Zana A, Bizzotto F, Oezaslan M, Dworzak A, Kirkensgaard JJK, Smitshuysen TEL, Kadkhodazadeh S, Juelsholt M, Jensen KM, Anklam K, Wan H, Schäfer J, Arenz M. Self-supported Pt–CoO networks combining high specific activity with high surface area for oxygen reduction. Nat Mater. 2020. https://doi.org/10.1038/s41563-020-0775-8.

    Article  Google Scholar 

  35. Zhao Y, Zhao F, Wang X, Xu C, Zhang Z, Shi G, Qu L. Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution. Angew Chem Int Ed. 2014;53(50):13934–9.

    Article  CAS  Google Scholar 

  36. Tang YJ, Gao MR, Liu CH, Li SL, Jiang HL, Lan YQ, Han M, Yu SH. Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew Chem Int Ed. 2015;127(44):13120–4.

    Article  Google Scholar 

  37. Xiao P, Yan Y, Ge X, Liu Z, Wang J, Wang X. Investigation of molybdenum carbide nano-rod as an efficient and durable electrocatalyst for hydrogen evolution in acidic and alkaline media. Appl Catal B Environ. 2014;154:232–7.

    Article  Google Scholar 

  38. Zhang Z, Cai J, Zhu H, Zhuang Z, Xu F, Hao J, Lu S, Li H, Duan F, Du M. Simple construction of ruthenium single atoms on electrospun nanofibers for superior alkaline hydrogen evolution: a dynamic transformation from clusters to single atoms. Chem Eng J. 2020;392:123655.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (NSFC) (Grant nos. 51803077, 52073124), Natural Science Foundation of Jiangsu Province (Grant nos. BK20180627), Postdoctoral Science Foundation of China (2018M630517, 2019T120389), the MOE and SAFEA, 111 Project (B13025), the national first-class discipline program of Light Industry Technology and Engineering (LITE2018-19), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Zhu or Mingliang Du.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Hao, J., Zhu, H. et al. In Situ Fabrication of Electrospun Carbon Nanofibers–Binary Metal Sulfides as Freestanding Electrode for Electrocatalytic Water Splitting. Adv. Fiber Mater. 3, 117–127 (2021). https://doi.org/10.1007/s42765-020-00063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00063-7

Keywords

Navigation