Skip to main content
Log in

Carbon Nanofibers Supported Ultra-Small Palladium Oxide Nanoclusters as an Efficient and Continuable Catalyst for Suzuki Coupling Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This work reports a very facile method to fabricate ultra-small PdO nanoclusters supported on carbon nanofibers (CNFs) which performed outstanding catalytic activity for Suzuki coupling reaction under the mild reaction conditions. The catalyst developed in this paper showed several advantages compared with our group previous jobs, such as simpler procedure to prepare the catalyst, lower active species loading and higher performance in Suzuki coupling reactions. Importantly, the catalyst could be recycled at least up to ten times and without any loss in activity. The reaction mechanism in this system was also explored by our group.

Graphical Abstract

Ultra-small palladium oxide nanoclusters supported on carbon nanofibers (PdO@CNFs) were successfully obtained through the facile process of electrospinning technology and high-temperature carbonization. The fabricated composite catalyst exhibited a better catalytic activity for Suzuki coupling reaction under mild conditions, especially in recycle ability (at least ten times). According to the experiment results, a plausible reaction mechanism was proposed by our group. We had an idea that the active species was palladium oxide, and the first step involved the reaction between bromobenzene and palladium oxide nanoclusters generated organo-oxopalladium species. This step was a rate-determining step and slightly different from the traditional mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Balanta A, Godard C, Claver C (2011) Chem Soc Rev 40:4973–4985

    Article  CAS  Google Scholar 

  2. Kotha S, Lahiri K, Kashinath D (2002) Tetrahedron 58:9633–9695

    Article  CAS  Google Scholar 

  3. Borah RK, Mahanta A, Dutta A, Bora U, Thakur AJ (2017) Appl Organomet Chem 31:e3784

    Article  Google Scholar 

  4. Jana R, Pathak TP, Sigman MS (2011) Chem Rev 111:1417–1492

    Article  CAS  Google Scholar 

  5. Gautam P, Dhiman M, Polshettiwar V, Bhanage BM (2016) Green Chem 18:5890–5899

    Article  CAS  Google Scholar 

  6. Rathi AK, Gawande MB, Pechousek J, Tucek J, Aparicio C, Petr M, Tomanec O, Krikavova R, Travnicek Z, Varma RS, Zboril R (2016) Green Chem 18:2363–2373

    Article  CAS  Google Scholar 

  7. Yadav MR, Nagaoka M, Kashihara M, Zhong RL, Miyazaki T, Sakaki S, Nakao Y (2017) J Am Chem Soc 139:9423–9426

    Article  CAS  Google Scholar 

  8. Handa S, Smith JD, Hageman MS, Gonzalez M, Lipshutz BH (2016) ACS Catal 6:8179–8183

    Article  CAS  Google Scholar 

  9. Yılmaz N, Baran T, Baran A, Menteş (2017) Appl Catal A 531:36–44

    Article  Google Scholar 

  10. Savanur HM, Kalkhambkar RG, Laali KK (2017) Appl Catal A 543:150–161

    Article  CAS  Google Scholar 

  11. Tellis JC, Primer DN, Molander GA (2014) Science 345:433–436

    Article  CAS  Google Scholar 

  12. Leyva-Perez A, Oliver-Meseguer J, Rubio-Marques P, Corma A (2013) Angew Chem Int Ed 52:11554–11559

    Article  CAS  Google Scholar 

  13. Braga AAC, Morgon NH, Ujaque G, Maseras F (2005) J Am Chem Soc 127:9298–9307

    Article  CAS  Google Scholar 

  14. Melchor MG, Braga AAC, Ujaque ALledos,G, Maseras F (2013) Acc Chem Res 46:2626–2634

    Article  Google Scholar 

  15. Sun J, Fu Y, He G, Sun X, Wang X (2015) Appl Catal B 165:661–667

    Article  CAS  Google Scholar 

  16. Lennox AJ, Lloyd-Jones GC (2013) Angew Chem Int Ed 52:7362–7370

    Article  CAS  Google Scholar 

  17. Hoffmann I, Blumenröder B, Onodi neé S, Thumann S, Dommer, Schatz J (2015) Green Chem 17:3844–3857

    Article  CAS  Google Scholar 

  18. Heidari F, Hekmati M, Veisi H (2017) J Colloid Interface Sci 501:175–184

    Article  CAS  Google Scholar 

  19. Mondal P, Bhanja P, Khatun R, Bhaumik A, Das D, Islam SM (2017) J Colloid Interface Sci 508:378–386

    Article  CAS  Google Scholar 

  20. Zhang L, Fang Y, Jin X, Xu H, Li R, Wu H, Chen B, Zhu Y, Yang Y, Tian Z (2017) Org Biomol Chem 15:8985–8989

    Article  CAS  Google Scholar 

  21. Bhaskar R, Sharma AK, Yadav MK, Singh AK (2017) Dalton Trans 46:15235–15248

    Article  CAS  Google Scholar 

  22. Shabbir S, Lee S, Lim M, Lee H, Ko H, Lee Y, Rhee H (2017) J Organomet Chem 846:296–304

    Article  CAS  Google Scholar 

  23. Sharma S, Nazir R, Pande S, Sarkar BR (2017) ChemistrySelect 2:8745–8750

    Article  CAS  Google Scholar 

  24. Khazaei A, Khazaei M, Nasrollahzadeh M (2017) Tetrahedron 73:5624–5633

    Article  CAS  Google Scholar 

  25. Ulusal F, Darendeli B, Erünal E, Egitmen A, Guzel B (2017) J Supercrit Fluid 127:111–120

    Article  CAS  Google Scholar 

  26. Martin R, Buchwald SL (2008) Acc Chem Res 41:1461–1473

    Article  CAS  Google Scholar 

  27. Yang Y, Buchwald SL (2013) J Am Chem Soc 135:10642–10645

    Article  CAS  Google Scholar 

  28. Kinze T, Zhang Y, Buchwald SL (2010) J Am Chem Soc 132:14073–14075

    Article  Google Scholar 

  29. She Y, Lu Z, Fan W, Jewell S, Leung MKH (2014) J Mater Chem A 2:3894

    Article  CAS  Google Scholar 

  30. Wu Y, Wang D, Zhao P, Niu Z, Peng Q, Li Y (2011) Inorg Chem 50:2046–2048

    Article  CAS  Google Scholar 

  31. Lv J-J, Wang Z-J, Feng J-J, Qiu R, Wang A-J, Xu X (2016) Appl Catal A 522:188–193

    Article  CAS  Google Scholar 

  32. Nie R, Shi J, Du W, Hou Z (2014) Appl Catal A 473:1–6

    Article  CAS  Google Scholar 

  33. Saha J, Bhowmik K, Das I, De G (2014) Dalton Trans 43:13325

    Article  CAS  Google Scholar 

  34. Rai RK, Gupta K, Tyagi D, Mahata A, Behrens S, Yang X, Xu Q, Pathak B, Singh SK (2016) Catal Sci Technol 6:5567–5579

    Article  CAS  Google Scholar 

  35. Dhankhar A, Rai RK, Tyagi D, Yao X, Singh SK (2016) ChemistrySelect 1:3223–3227

    Article  CAS  Google Scholar 

  36. Fu F, Xiang J, Cheng H, Cheng L, Chong H, Wang S, Li P, Wei S, Zhu M, Li Y (2017) ACS Catal 7:1860–1867

    Article  CAS  Google Scholar 

  37. Li G, Jin R (2013) Acc Chem Res 46:1749–1758

    Article  CAS  Google Scholar 

  38. Chen Z, Liang Y, Jia D-S, Cui Z-M, Song W-G (2017) Chin J Catal 38:651–657

    Article  CAS  Google Scholar 

  39. Maeyama K, Suzuki M, Tsukamoto T, Higashibayashi S, Sakurai H (2014) React Funct Polym 79:24–28

    Article  CAS  Google Scholar 

  40. Astruc D, Lu F, Aranzaes JR (2005) Angew Chem Int Ed 44:7852–7872

    Article  CAS  Google Scholar 

  41. Abbas Khakiani B, Pourshamsian K, Veisi H (2015) Appl Organomet Chem 29:259–265

    Article  CAS  Google Scholar 

  42. Veisi H, Pirhayati M, Kakanejadifard A (2017) Tetrahedron Lett 58:4269–4276

    Article  CAS  Google Scholar 

  43. Veisi H, Ghadermazi M, Naderi A (2016) Appl Organomet Chem 30:341–345

    Article  CAS  Google Scholar 

  44. pirhayati M, Veisi H, Kakanejadifard A (2016) RSC Adv 6:27252–27259

    Article  CAS  Google Scholar 

  45. Ghorbani-Vaghei R, Hemmati S, Veisi H (2013) Tetrahedron Lett 54:7095–7099

    Article  CAS  Google Scholar 

  46. Veisi H, Biabri PM, Falahi H (2017) Tetrahedron Lett 58:3482–3486

    Article  CAS  Google Scholar 

  47. Lebaschi S, Hekmati M, Veisi H (2017) J Colloid Interface Sci 485:223–231

    Article  CAS  Google Scholar 

  48. Shi Z, Li B, Wan X, Cheng J, Fang Z, Cao B, Qin C, Wang Y (2007) Angew Chem Int Ed 46:5554–5558

    Article  CAS  Google Scholar 

  49. Elias WC, Signori AM, Zaramello L, Albuquerque BL, de Oliveira DC, Domingos JB (2017) ACS Catal 7:1462–1469

    Article  CAS  Google Scholar 

  50. Yoon CH, Yoo KS, Yi SW, Mishira RK, Jung KW (2004) Org Lett 6:4037–4039

    Article  CAS  Google Scholar 

  51. Delcamp JH, White MC (2006) J Am Chem Soc 128:15076–15077

    Article  CAS  Google Scholar 

  52. Yadav JS, Gayathri KU, Ather H, Rehman Hu, Prasad AR (2007) J Mol Catal A 271:25–27

    Article  CAS  Google Scholar 

  53. Guo S, Bai J, Liang H, Li C (2016) RSC Adv 6:62181–62185

    Article  CAS  Google Scholar 

  54. Guo S-J, Bai J, Liang H-O, Li C-P (2016) Chin Chem Lett 27:459–463

    Article  CAS  Google Scholar 

  55. Yu D, Bai J, Wang J, Liang H, Li C (2017) Appl Surf Sci 399:185–191

    Article  CAS  Google Scholar 

  56. Yu D, Bai J, Wang J, Li C (2016) J Inorg Organomet Polym Mater 26:914–920

    Article  CAS  Google Scholar 

  57. Guo L, Bai J, Wang J, Liang H, Li C, Sun W, Meng Q (2015) J Mol Catal A 400:95–103

    Article  CAS  Google Scholar 

  58. Xia J, Fu Y, He G, Sun X, Wang X (2017) Appl Catal B 200:39–46

    Article  CAS  Google Scholar 

  59. Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  60. Wang K, Dong X, Zhao C, Qian X, Xu Y (2015) Electrochim Acta 152:433–442

    Article  CAS  Google Scholar 

  61. Littke AF, Fu GC (2002) Angew Chem Int Ed 41:4176–4211

    Article  CAS  Google Scholar 

  62. Fang PP, Jutand A, Tian ZQ, Amatore C (2011) Angew Chem Int Ed 50:12184–12188

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (No. 21766022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, G., Bai, J., Li, C. et al. Carbon Nanofibers Supported Ultra-Small Palladium Oxide Nanoclusters as an Efficient and Continuable Catalyst for Suzuki Coupling Reaction. Catal Lett 148, 3389–3401 (2018). https://doi.org/10.1007/s10562-018-2527-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2527-9

Keywords

Navigation