Skip to main content
Log in

Ferric Sulfasalazine Sulfa Drug Complex Supported on Cobalt Ferrite Cellulose; Evaluation of Its Activity in MCRs

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The green and nano catalyst was simply prepared through the reaction of ferric sulfasalazine with nanomaterial CoFe2O4-cellulose as a magnetic biopolymer surface. This novel heterogeneous organometallic catalyst was characterized by X-ray diffraction, field emission scanning electron microscopy, FT-IR spectroscopy, thermal gravimetric analysis, and energy dispersive analysis of X-rays, and inductively coupled plasma-mass spectrometry. This green sulfasalazine drug complex supported on CoFe2O4 cellulose was applied as an efficient and recyclable catalyst for organic reactions such as synthesis of functionalized 4H- pyrans and 1,4-dihydropyridines derivatives. All of the reactions were carried out successfully under mild conditions in a short reaction time. The used catalyst was easily separated and reused for 6 runs without noticeable loss of its catalytic activity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Abdelrazek FM, Metz P, Kataeva O, Jager A, El-Mahrouky SF (2007) Synthesis and molluscicidal activity of new chromene and pyrano[2,3-c]pyrazole derivatives. Arch der Pharm 340(10):543–548. https://doi.org/10.1002/ardp.200700157

    Article  CAS  Google Scholar 

  2. Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694. https://doi.org/10.1021/ar010065m

    Article  CAS  PubMed  Google Scholar 

  3. Azad S, Mirjalili BBF (2016) Fe3O4@nano-cellulose/TiCl: a bio-based and magnetically recoverable nano-catalyst for the synthesis of pyrimido [2, 1-b] benzothiazole derivatives. RSC Adv 6:96928–96934. https://doi.org/10.1039/C6RA13566H

    Article  CAS  Google Scholar 

  4. Baig RBN, Varma RS (2013) Copper on chitosan: a recyclable heterogeneous catalyst for azide–alkyne cycloaddition reactions in water. Green Chem 15:398–417. https://doi.org/10.1039/C3GC40401C

    Article  Google Scholar 

  5. Bonsignore L, Loy G, Secci D, Calignano A (1993) Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur J Med 28(6):517–520

    Article  CAS  Google Scholar 

  6. Chen MN, Mo LP, Cui ZS, Zhang ZH (2019) Magnetic nano catalysts: synthesis and application in multicomponent reactions. Curr Opin Green Sustain Chem 15:27. https://doi.org/10.1016/j.cogsc.2018.08.009

    Article  Google Scholar 

  7. Chen HJ, Lin ZY, Li MY, Lian RJ, Xue QW, Chung JL, Chen SC, Chen YJ (2010) A new, efficient, and inexpensive copper (II)/salicylic acid complex catalyzed Sonogashira-type cross-coupling of haloarenes and iodoheteroarenes with terminal alkynes. Tetrahedron 66:7755–7761. https://doi.org/10.1016/j.tet.2010.07.072

    Article  CAS  Google Scholar 

  8. Cornils B, Herrmann, WA (1996) Applied homogeneous catalysis with organometallic compounds, Weinheim, Germany. A comprehensive handbook in three volumes, Weinheim, Germany. A comprehensive handbook in three volumes 1–2. ISBN: 978–3–527–30434–9.

  9. Demirci T, Çelik B, Yıldız Y, Eriş S, Arslan M, Sen F, Kilbas B (2016) One-pot synthesis of Hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst. RSC Adv 6:76948–76956. https://doi.org/10.1039/C6RA13142E

    Article  CAS  Google Scholar 

  10. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, Keeffe MO, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res 34:319. https://doi.org/10.1021/ar000034b

    Article  CAS  PubMed  Google Scholar 

  11. Elnagdi HMN, Al-Hokbany SN (2012) Organocatalysis in synthesis: L-proline as an enantioselective catalyst in the synthesis of pyrans and thiopyrans. Molecules 17:4300–4312. https://doi.org/10.3390/molecules17044300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Esfahani MN, Hoseini SJ, Montazerozohori M, Mehrabi R, Nasrabadi H (2014) Synthesis and characterization of magnetic bromochromate hybrid nanomaterials with triphenylphosphine surface-modified iron oxide nanoparticles and their catalytic application in multicomponent reactions. J Mol Catal A 382:99–105. https://doi.org/10.1039/C4RA04654D

    Article  Google Scholar 

  13. Gawande MB, Luque R, Zboril R (2014) The rise of magnetically recyclable nanocatalysts. Chem Cat Chem 6(12):3312–3313. https://doi.org/10.1002/cctc.201402663

    Article  CAS  Google Scholar 

  14. Green GR, Evans JM, Vong AK (1995) Pyrans and their benzo derivatives synthesis. In: Katritzky AR, Rees CW, Scriven EFV (eds) Comprehensive heterocyclic chemistry II, vol 5. Pergamon Press, Oxford, p 469

    Google Scholar 

  15. Gupta R, Gupta R, Paul S, Loupy A (2007) Covalently anchored sulfonic acid on silica gel as an efficient and reusable heterogeneous catalyst for the one-pot synthesis of Hantzsch 1, 4-dihydropyridines under solvent-free conditions. Synthesis 18:2835–2838. https://doi.org/10.1055/s-2007-983839

    Article  CAS  Google Scholar 

  16. Gutierrez FL, Nope E, Rojas AH, Cubillos AJ, Sathicq GA, Romanelli PG, Martı´nez JJ, (2018) New application of decaniobate salt as basic solid in the synthesis of 4H-pyrans by microwave assisted multicomponent reactions. Res Chem Intermed 44(9):5559–5568. https://doi.org/10.1007/s11164-018-3440-y

    Article  CAS  Google Scholar 

  17. Hou JT, Gao JW, Zhang ZH (2011) NbCl5: an efficient catalyst for one-pot synthesis of α-amino phosphonates under solvent-free conditions. Appl Organomet Chem 25:47–53. https://doi.org/10.1002/aoc.1687

    Article  CAS  Google Scholar 

  18. Kaufman BM (2013) The American society of health-system pharmacists midyear clinical meeting & exhibition. P&T 38:119–120

    Google Scholar 

  19. Khalil DK, Al-Matar MH (2013) Chitosan based heterogeneous catalyses: chitosan-grafted-poly (4-Vinylpyridne) as an efficient catalyst for Michael additions and alkylpyridazinyl carbonitrile oxidation. Molecules 18:5288–5305. https://doi.org/10.1080/17518253.2012.691183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar A, Maurya RA (2008) Efficient synthesis of hantzsch esters and polyhydroquinoline derivatives in aqueous micelles. Synlett 6:883–885. https://doi.org/10.1055/s-2008-1042908

    Article  CAS  Google Scholar 

  21. Naghiyev F, Mamedov F, Khrustalev V, Shixaliyev N, Maharramov A (2009) A new direction in the alkylation of 5-acetyl-2-amino-6-methyl-4-phenyl-4H-pyran-3-carbonitrile with active methylene reagents. J Chin Chem Soc 50:4125–4127. https://doi.org/10.1002/jccs.201800283

    Article  CAS  Google Scholar 

  22. Noyori R (1994) Asymmetric catalysis in organic synthesis. Wiley, New York. ISBN: 978-0-471-57267-1

  23. Nurchi VM, Alonso MC, Toso L, Lachowicz JI, Crisponi G, Alberti G, Biesur R, Martin AD, Gutierrez JN, Perez JMG, Zoroddu MA (2013) Iron (III) and aluminium (III) complexes with substituted salicyl-aldehydes and salicylic acids. J Inorg Biochem 128:174–182. https://doi.org/10.1016/j.jinorgbio.2013.07.016

    Article  CAS  PubMed  Google Scholar 

  24. Nurchi VM, Pivetta T, Lachowicz JI, Crisponi G (2009) Effect of substituents on complex stability aimed at designing new iron(III) and aluminum(III) chelators. J Inorg Biochem 103:227–236. https://doi.org/10.1016/j.jinorgbio.2008.10.011

    Article  CAS  PubMed  Google Scholar 

  25. Praveen K, Madhavi DSS, Kumar KA, Kumar YK (2016) Microstructure and mechanical properties of MG/WC composites prepared by stir casting method. Int J Eng Sci Invent 5(9):8–10

    Google Scholar 

  26. Pozdnyakov IP, Plyusnin VF, Grivin VP, Oliveros E (2015) Photochemistry of Fe (III) and sulfosalicylic acid aqueous solutions. J Photochem Photobiol A 307–308:9–15. https://doi.org/10.1016/j.jphotochem.2006.01.017

    Article  CAS  Google Scholar 

  27. Rajput JK, Kaur G (2014) Synthesis and applications of CoFe2O4 nanoparticles for multicomponent reactions. Catal Sci Technol 4:142–151. https://doi.org/10.1039/C3CY00594A

    Article  CAS  Google Scholar 

  28. Rao CNR, Natarajan S, Vaidhyanathan R (2004) Metal carboxylates with open architectures. Angew Chem 43:1466. https://doi.org/10.1002/anie.200300588

    Article  CAS  Google Scholar 

  29. Rostamizadeh S, Daneshfar Z, Moghimi H (2019) Synthesis of sulfamethoxazole and sulfabenzamide metal complexes; evaluation of their antibacterial activity. Eur J Med Chem 171:364. https://doi.org/10.1016/j.ejmech.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  30. Safajoo N, Mirjalili BBF, Bamoniri A (2019) Fe3O4@nano-cellulose/ Cu (II): a bio-based and magnetically recoverable nano-catalyst for the synthesis of 4H-pyrimido [2,1-b] benzothiazole derivatives. RSC Adv 9:1278. https://doi.org/10.1039/C8RA09203F

    Article  CAS  Google Scholar 

  31. Safari J, Banitaba SH, Khalili SD (2011) Cellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of 1,4-dihydropyridines via unsymmetrical hantzsch reaction in aqueous media. J Mol Catal A 335:46–50. https://doi.org/10.1016/j.molcata.2010.11.012

    Article  CAS  Google Scholar 

  32. Sarnikar P, Mane YD, Survarse SM, Khade BC (2015) Samarium chloride: an efficient catalyst synthesis of 1, 4-dihydropyridines (Hantzsch pyridines). Der Pharma Chem 7:1–4

    CAS  Google Scholar 

  33. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58. https://doi.org/10.1016/j.ijbiomac.2013.04.043

    Article  CAS  PubMed  Google Scholar 

  34. Soliman AA, Mohamed GG, Hosny WM, Mawgood MAE (2005) Synthesis, spectroscopic and thermal characterization of new sulfasalazine metal complexes. Synth React Inorg Metal-organic Nano-metal Chem 35:483–490. https://doi.org/10.1081/SIM-200067043

    Article  CAS  Google Scholar 

  35. Tamadon F, Moradi S (2013) Controllable selectivity in Biginelli and hantzsch reactions using nano ZnO as a structure base catalyst. J Mol Catal A 370:117–122. https://doi.org/10.1016/j.molcata.2012.12.005

    Article  CAS  Google Scholar 

  36. Valkenber MH, Hölderich WF (2002) Preparation and use of hybrid organic–Inoganic catalysts. Catal. Reviews 44:321–374. https://doi.org/10.1081/CR-120003497

    Article  Google Scholar 

  37. Witte EC (1986) 7-(Piperazinylpropoxy) - 2H-1-benzo-pyran-2-ones Ger Offen DE 3427985. Chem Abstr 104:224915f

    Google Scholar 

  38. Zarnegar Z, Safari J (2014) Fe3O4@chitosan nanoparticles: a valuable heterogeneous nano catalyst for the synthesis of 2, 4, 5-trisubstituted imidazoles. RSC Adv 4:20932–20939. https://doi.org/10.1039/C4RA03176H

    Article  CAS  Google Scholar 

  39. Zhang M, Liu P, Liu YH, Shang ZR, Hu HC, Zhang ZH (2016) Magnetically separable graphene oxide anchored sulfonic acid: a novel, highly efficient and recyclable catalyst for one-pot synthesis of 3,6-di(pyridin-3-yl)-1H-pyrazolo[3,4-b]pyridine-5-carbonitriles in deep eutectic solvent under microwave irradiation. RSC Adv 6:106160. https://doi.org/10.1039/C6RA19579B

    Article  CAS  Google Scholar 

  40. Zhang HY, Hao XP, Mo LP, Liu SS, Zhang WB, Zhang ZH (2017) A magnetic metal–organic framework as a highly active heterogeneous catalyst for one-pot synthesis of 2-substituted alkyl and aryl (indolyl) kojic acid derivatives. New J Chem 41:7108–7115. https://doi.org/10.1039/C7NJ01592E

    Article  CAS  Google Scholar 

  41. Zhang M, Fu QY, Gao G, He HY, Ying Zhang WuYS, Zhang ZH (2017) Catalyst-Free, visible-light promoted one-pot synthesis of spirooxindole-pyran derivatives in aqueous ethyl lactate. ACS Sustain Chem Eng 5:6175. https://doi.org/10.1021/acssuschemeng.7b01102

    Article  CAS  Google Scholar 

  42. Zhang M, Liu YH, Shang RZ, Hu HC, Zhang ZH (2017) Supported molybdenum on graphene oxide/Fe3O4: an efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal Commun 88:39. https://doi.org/10.1016/j.catcom.2016.09.028

    Article  CAS  Google Scholar 

  43. Zhao XN, Hu GF, Tang M, Shi TT, Guo XL, Li TT, Zhang ZH (2014) A highly efficient and recyclable cobalt ferrite chitosan sulfonic acid magnetic nanoparticle for one-pot, four-component synthesis of 2H-indazolo [2,1-b] phthalazine-triones. RSC Adv 25:12929–12943. https://doi.org/10.1039/C4RA09984B

    Article  CAS  Google Scholar 

  44. Zhao XN, Hu HC, Zhang FJ, Zhang ZH (2014) Magnetic CoFe2O4 nanoparticle immobilized N-propyl diethylenetriamine sulfamic acid as an efficient and recyclable catalyst for the synthesis of amides via the Ritter reaction. Appl Catal A 482:258–265. https://doi.org/10.1016/j.apcata.2014.06.006

    Article  CAS  Google Scholar 

  45. Zonouz MA, Eskandari I, Moghani D (2012) Acceleration of multicomponent reactions in aqueous medium: multicomponent synthesis of a 4H-pyran library. Chem Sci Trans 1(1):91–102. https://doi.org/10.7598/cst2012.143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Iran National Science Foundation (INSF) and K. N. Toosi University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahnaz Rostamizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 5641 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostamizadeh, S., Daneshfar, Z. & Khazaei, A. Ferric Sulfasalazine Sulfa Drug Complex Supported on Cobalt Ferrite Cellulose; Evaluation of Its Activity in MCRs. Catal Lett 150, 2091–2114 (2020). https://doi.org/10.1007/s10562-020-03101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03101-6

Keywords

Navigation