Skip to main content
Log in

A Novel Spherical Boron Phosphide as a High-Efficiency Overall Water Splitting Catalyst: A Density Functional Theory Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We built a novel boron phosphide isomer with spherical structure firstly. This boron phosphide isomer is a highly symmetrical perfect dodecahedron composed of 8 boron atoms and 12 phosphorus atoms, in which each five-membered ring containing two boron atoms and three phosphorus atoms. We also investigated its structural characterizations including characteristic peaks and their corresponding vibration modes by simulating the IR, Raman and NMR spectrum. It is found that the novel boron phosphide isomer has a high activity for water molecule splitting. This unique B–P bridge structure can adsorb one water molecule and break its strong O–H chemical bond. The whole reaction of overall water splitting consists of five transition states and four intermediates, and the breaking of O–H bond with the activation energy of 2.92 eV is the rate-controlling step. The B8P12 molecular holds the stable spherical structure during the whole water splitting process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nocera DG (2012) Acc Chem Res 45:767–776

    Article  CAS  PubMed  Google Scholar 

  2. Crabtree GW, Dresselhaus MS, Buchanan MV (2004) Phys Today 57:39–44

    Article  CAS  Google Scholar 

  3. Kibsgaard J, Jaramillo TF (2014) Angew Chem Int Ed 53:14433–14437

    Article  CAS  Google Scholar 

  4. Chen X, Shen S, Guo L, Mao SS (2010) Chem Rev 110:6503–6570

    Article  CAS  PubMed  Google Scholar 

  5. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110:6446–6473

    Article  CAS  PubMed  Google Scholar 

  6. Zheng Y, Jiao Y, Jaroniec M, Qiao SZ (2015) Angew Chem Int Ed 54:52–65

    Article  CAS  Google Scholar 

  7. Gray HB (2009) Nat Chem 1:7

    Article  CAS  PubMed  Google Scholar 

  8. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) J Am Chem Soc 135:9267–9270

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Kolen’ko YV, Bao XQ, Kovnir K, Liu L (2015) Angew Chem Int Ed Engl 54:8188–8192

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Li W, Xiong D, Petrovykh DY, Liu L (2016) Adv Funct Mater 26:4067–4077

    Article  CAS  Google Scholar 

  11. Wexler RB, Martirez JMP, Rappe AM (2017) ACS Catal 7:7718–7725

    Article  CAS  Google Scholar 

  12. Xu J, Wei X-K, Costa JD, Lado JL, Owens-Baird B, Gonçalves LP, Fernandes SP, Heggen M, Petrovykh DY, Dunin-Borkowski RE (2017) ACS Catal 7:5450–5455

    Article  CAS  Google Scholar 

  13. Du C, Yang L, Yang F, Cheng G, Luo W (2017) ACS Catal 7:4131–4137

    Article  CAS  Google Scholar 

  14. Xu Y, Tu W, Zhang B, Yin S, Huang Y, Kraft M, Xu R (2017) Adv Mater 29:1605957

    Article  CAS  Google Scholar 

  15. Tang C, Zhang R, Lu W, Wang Z, Liu D, Hao S, Du G, Asiri AM, Sun X (2017) Angew Chem 129:860–864

    Article  Google Scholar 

  16. Xu J, Sousa JP, Mordvinova NE, Costa JD, Petrovykh DY, Kovnir K, Lebedev OI, Kolen’ko YV (2018) ACS Catal 8:2595–2600

    Article  CAS  Google Scholar 

  17. Yu F, Zhou H, Huang Y, Sun J, Qin F, Bao J, Goddard WA III, Chen S, Ren Z (2018) Nat Commun 9:2551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri AM, Sun X (2014) Angew Chem Int Ed Engl 53:6710–6714

    Article  CAS  PubMed  Google Scholar 

  19. Tian J, Cheng N, Liu Q, Xing W, Sun X (2015) Angew Chem Int Ed Engl 54:5493–5497

    Article  CAS  PubMed  Google Scholar 

  20. Yang F, Chen Y, Cheng G, Chen S, Luo W (2017) ACS Catal 7:3824–3831

    Article  CAS  Google Scholar 

  21. Wang H, Min S, Wang Q, Li D, Casillas G, Ma C, Li Y, Liu Z, Li LJ, Yuan J, Antonietti M, Wu T (2017) ACS Nano 11:4358–4364

    Article  CAS  PubMed  Google Scholar 

  22. He P, Yu XY, Lou XWD (2017) Angew Chem 129:3955–3958

    Article  Google Scholar 

  23. Hou Y, Qiu M, Zhang T, Zhuang X, Kim CS, Yuan C, Feng X (2017) Adv Mater 29:1701589

    Article  CAS  Google Scholar 

  24. Pramanik M, Tominaka S, Wang ZL, Takei T, Yamauchi Y (2017) Angew Chem Int Ed Engl 56:13508–13512

    Article  CAS  PubMed  Google Scholar 

  25. Li H, Li Q, Wen P, Williams TB, Adhikari S, Dun C, Lu C, Itanze D, Jiang L, Carroll DL, Donati GL, Lundin PM, Qiu Y, Geyer SM (2018) Adv Mater 30:1705796

    Article  CAS  Google Scholar 

  26. Pan Y, Sun K, Liu S, Cao X, Wu K, Cheong WC, Chen Z, Wang Y, Li Y, Liu Y, Wang D, Peng Q, Chen C, Li Y (2018) J Am Chem Soc 140:2610–2618

    Article  CAS  PubMed  Google Scholar 

  27. Chung DY, Jun SW, Yoon G, Kim H, Yoo JM, Lee KS, Kim T, Shin H, Sinha AK, Kwon SG, Kang K, Hyeon T, Sung YE (2017) J Am Chem Soc 139:6669–6674

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Liu W, Zhang M, Zhong Y, Weng Z, Mi Y, Zhou Y, Li M, Cha JJ, Tang Z, Jiang H, Li X, Wang H (2017) Nano Lett 17:2057–2063

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Yu X, Zhang L, Zhou F, Liang Y, Wang R (2018) Adv Funct Mater 28:1706523

    Article  CAS  Google Scholar 

  30. Wang R, Dong XY, Du J, Zhao JY, Zang SQ (2018) Adv Mater 30:1703711

    Article  CAS  Google Scholar 

  31. Duan H, Li D, Tang Y, He Y, Ji S, Wang R, Lv H, Lopes PP, Paulikas AP, Li H, Mao SX, Wang C, Markovic NM, Li J, Stamenkovic VR, Li Y (2017) J Am Chem Soc 139:5494–5502

    Article  CAS  PubMed  Google Scholar 

  32. Zou X, Zhang Y (2015) Chem Soc Rev 44:5148–5180

    Article  CAS  PubMed  Google Scholar 

  33. Popper P, Ingles T (1957) Nature 179:1075

    Article  CAS  Google Scholar 

  34. Vickery R (1959) Nature 184:268

    Article  CAS  Google Scholar 

  35. Williams FV, Ruehrwein RA (1960) J Am Chem Soc 82:1330–1332

    Article  CAS  Google Scholar 

  36. Peret JL (1964) J Am Ceram Soc 47:44–46

    Article  CAS  Google Scholar 

  37. Dong J, Li H, Li L (2013) NPG Asia Mater 5:e56

    Article  CAS  Google Scholar 

  38. Li G, Abbott JK, Brasfield JD, Liu P, Dale A, Duscher G, Rack PD, Feigerle CS (2015) Appl Surf Sci 327:7–12

    Article  CAS  Google Scholar 

  39. Medvedev V, Yakshin A, van de Kruijs RWE, Bijkerk F (2015) Opt Mater Express 5:1450–1459

    Article  CAS  Google Scholar 

  40. Zhang X, Qin J, Liu H, Zhang S, Ma M, Luo W, Liu R, Ahuja R (2015) Sci Rep 5:8761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mukhanov VA, Vrel D, Sokolov PS, Le Godec Y, Solozhenko VL (2016) Dalton Trans 45:10122–10126

    Article  CAS  PubMed  Google Scholar 

  42. Shi L, Li P, Zhou W, Wang T, Chang K, Zhang H, Kako T, Liu G, Ye J (2016) Nano Energy 28:158–163

    Article  CAS  Google Scholar 

  43. Huber S, Medvedev V, Meyer-Ilse J, Gullikson E, Padavala B, Edgar J, Sturm JM, van de Kruijs RWE, Prendergast D, Bijkerk F (2016) Opt Mater Express 6:3946–3959

    Article  CAS  Google Scholar 

  44. Varley JB, Miglio A, Ha V-A, van Setten MJ, Rignanese G-M, Hautier G (2017) Chem Mater 29:2568–2573

    Article  CAS  Google Scholar 

  45. Jiang H, Shyy W, Liu M, Wei L, Wu M, Zhao T (2017) J Mater Chem A 5:672–679

    Article  CAS  Google Scholar 

  46. Kang JS, Wu H, Hu Y (2017) Nano Lett 17:7507–7514

    Article  CAS  PubMed  Google Scholar 

  47. Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Phys Rev B 80:155453

    Article  CAS  Google Scholar 

  48. Wu M, Zhang Z, Zeng XC (2010) Appl Phys Lett 97:093109

    Article  CAS  Google Scholar 

  49. Çakır D, Kecik D, Sahin H, Durgun E, Peeters FM (2015) PCCP 17:13013–13020

    Article  PubMed  CAS  Google Scholar 

  50. Zhu Z, Cai X, Niu C, Wang C, Jia Y (2016) Appl Phys Lett 109:153107

    Article  CAS  Google Scholar 

  51. Zeng B, Li M, Zhang X, Yi Y, Fu L, Long M (2016) J Phys Chem C 120:25037–25042

    Article  CAS  Google Scholar 

  52. Chen X, Tan C, Yang Q, Meng R, Liang Q, Jiang J, Sun X, Yang D, Ren T (2016) PCCP 18:16229–16236

    Article  CAS  PubMed  Google Scholar 

  53. Wang H, Li X, Sun J, Liu Z, Yang J (2017) 2D Mater 4:045020

    Article  CAS  Google Scholar 

  54. Huber SP, Medvedev VV, Gullikson E, Padavala B, Edgar JH, van de Kruijs RW, Bijkerk F, Prendergast D (2017) Phys Chem Chem Phys 19:8174–8187

    Article  CAS  PubMed  Google Scholar 

  55. Liu S, Liu B, Shi X, Lv J, Niu S, Yao M, Li Q, Liu R, Cui T, Liu B (2017) Sci Rep 7:2404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Cheng Y, Meng R, Tan C, Chen X, Xiao J (2018) Appl Surf Sci 427:176–188

    Article  CAS  Google Scholar 

  57. Zhai HJ, Zhao YF, Li WL, Chen Q, Bai H, Hu HS, Piazza ZA, Tian WJ, Lu HG, Wu YB, Mu YW, Wei GF, Liu ZP, Li J, Li SD, Wang LS (2014) Nat Chem 6:727–731

    Article  CAS  PubMed  Google Scholar 

  58. Bai H, Bai B, Zhang L, Huang W, Mu YW, Zhai HJ, Li SD (2016) Sci Rep 6:35518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu M, Artyukhov VI, Yakobson BI (2017) J Am Chem Soc 139:2111–2117

    Article  CAS  PubMed  Google Scholar 

  60. Liu X, Zhang Z, Wang L, Yakobson BI, Hersam MC (2018) Nat Mater 17:783–788

    Article  CAS  PubMed  Google Scholar 

  61. Ji X, Kong N, Wang J, Li W, Xiao Y, Gan ST, Zhang Y, Li Y, Song X, Xiong Q, Shi S, Li Z, Tao W, Zhang H, Mei L, Shi J (2018) Adv Mater 30:e1803031

    Article  CAS  Google Scholar 

  62. Frisch MJ, Trucks GW, Schlegel HB et al (2010) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  63. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  64. Andersson MP, Uvdal P (2005) J Phys Chem A 109:2937–2941

    Article  CAS  PubMed  Google Scholar 

  65. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  66. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  67. Iyengar SS, Schlegel HB, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2001) J Chem Phys 115:10291

    Article  CAS  Google Scholar 

  68. Schlegel HB, Iyengar SS, Li X, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2002) J Chem Phys 117:8694–8704

    Article  CAS  Google Scholar 

  69. Schlegel HB, Millam JM, Iyengar SS, Voth GA, Daniels AD, Scuseria GE, Frisch MJ (2001) J Chem Phys 114:9758–9763

    Article  CAS  Google Scholar 

  70. Brockherde F, Vogt L, Li L, Tuckerman ME, Burke K, Muller KR (2017) Nat Commun 8:872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  PubMed  CAS  Google Scholar 

  72. Jin Y, Tian Y, Kuang X, Zhang C, Lu C, Wang J, Lv J, Ding L, Ju M (2015) J Phys Chem A 119:6738–6745

    Article  CAS  PubMed  Google Scholar 

  73. Gu X, Ji M, Wei SH, Gong XG (2004) Phys Rev B 70:205401

    Article  CAS  Google Scholar 

  74. Tomanek D, Schluter MA (1991) Phys Rev Lett 67:2331–2334

    Article  CAS  PubMed  Google Scholar 

  75. Liu B, Lu ZY, Pan B, Wang CZ, Ho KM, Shvartsburg AA, Jarrold MF (1998) J Chem Phys 109:9401–9409

    Article  CAS  Google Scholar 

  76. von Helden G, Kemper PR, Gotts NG, Bowers MT (1993) Science 259:1300–1302

    Article  Google Scholar 

  77. Mitas L, Grossman JC, Stich I, Tobik J (2000) Phys Rev Lett 87:1479–1482

    Article  Google Scholar 

  78. Zhu XL, Zeng XC, Lei YA, Pan B (2004) J Chem Phys 120:8985–8995

    Article  CAS  PubMed  Google Scholar 

  79. von Helden G, Hsu MT, Kemper PR, Bowers MT (1991) J Chem Phys 95:3835–3837

    Article  Google Scholar 

  80. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Chem Soc Rev 44:2060–2086

    Article  CAS  PubMed  Google Scholar 

  81. Durst J, Siebel A, Simon C, Hasche F, Herranz J, Gasteiger H (2014) Energy Environ Sci 7:2255–2260

    Article  CAS  Google Scholar 

  82. Subbaraman R, Tripkovic D, Strmcnik D, Chang K-C, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM (2011) Science 334:1256–1260

    Article  CAS  PubMed  Google Scholar 

  83. Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y, Jaroniec M, Qiao S-Z (2016) J Am Chem Soc 138:16174–16181

    Article  CAS  PubMed  Google Scholar 

  84. Wang P, Zhang X, Zhang J, Wan S, Guo S, Lu G, Yao J, Huang X (2017) Nat Commun 8:14580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks for financially supported by the National Natural Science Foundation of China (No. 51772068).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengjian Zuo or Lihua Kang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Gong, W., Zuo, P. et al. A Novel Spherical Boron Phosphide as a High-Efficiency Overall Water Splitting Catalyst: A Density Functional Theory Study. Catal Lett 150, 544–554 (2020). https://doi.org/10.1007/s10562-019-02996-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02996-0

Keywords

Navigation