Skip to main content
Log in

Advantage of Co Embedded γ-Al2O3 Catalysts Over MgO and SiO2 Solid Oxides in the Selective Production of Styrene Monomer

  • Published:
Catalysis Letters Aims and scope Submit manuscript

A Correction to this article was published on 17 August 2019

This article has been updated

Abstract

A series of cobalt oxide (Co3O4) loaded (5–20wt%) γ-Al2O3, MgO and SiO2 supported catalysts were prepared by wetness-impregnation method and tested for oxidative dehydrogenation (ODH) of ethylbenzene (EB) in vapor phase atmospheric pressure conditions. Among Co oxide doped catalysts, Co3O4/γ-Al2O3 (CA) has afforded a superior catalytic activity in view of desirable EB conversion and styrene (ST) yields. Thus unusual catalytic properties of 15CA catalyst were supposed to be due to adequate acidic-basic nature, thermal stability and synergistic effect of Co-Al species along with uniform distribution of active Co oxide ions. Moreover, dramatic catalytic activity of Co3O4 incorporated γ-Al2O3 catalyst can be explained on the basis of beneficial CO2 conversion subsequently production of better CO yields during the online gas analysis. All calcined catalysts have been characterized by different sophisticated techniques to elucidate the surface metal composition and influence of Co3O4 oxide species on catalytic activity presentation during the oxidative dehydrogenation of EB reaction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 17 August 2019

    The article Advantage of Co Embedded γ-Al2O3 Catalysts Over MgO and SiO2 Solid Oxides in the Selective Production of Styrene Monomer, written by Venkata Rao Madduluri, Kamaraju Seetha Rama Rao, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 19 July 2019 with open access

References

  1. Lee EH (1973) Catal Rev 8:285–305

    Article  CAS  Google Scholar 

  2. Xingnan Y, Yinghong Y, Changxi M, Zaiku X, Weiming H, Zi G (2015) Green Chem 7:524–528

    Google Scholar 

  3. Venugopal AK, Venugopalan AT, Kaliyappan P, Swamy RT (2013) Green Chem 15(2013):3259–3267

    Article  CAS  Google Scholar 

  4. Jie X, Lun CW, Yong ML, Yong C, He YH, Kang NF (2009) Catal Lett 133:307–313

    Article  CAS  Google Scholar 

  5. Jie X, Bing X, Yong ML, Yong XL, Yong C, Kang NF (2011) Appl Catal A: Gen 405:142–148

    Article  CAS  Google Scholar 

  6. Nguyen VK, Park JH, Shin CH (2014) Korean J Chem Eng 31(4):582–586

    Article  CAS  Google Scholar 

  7. Mahipal RB, Rao KN, Reddy G, Khan A, Park SE (2007) J Phys Chem C 111:18751–18758

    Article  CAS  Google Scholar 

  8. Yoshihiko O, Tomonori K, Tetsuya S, Ken T, Qinghong Z, Ye W, Katsuomi T (2005) J Mol Catal A Chem 230:49–58

    Article  CAS  Google Scholar 

  9. Liu BS, Rui G, Chang RZ, Au CT (2008) Appl Catal A Gen 335:88–94

    Article  CAS  Google Scholar 

  10. Jong-San C, Vladislav PV, Park MS, Young HD, Jin SY, Park SE (2003) Green Chem 5:587–590

    Article  Google Scholar 

  11. Do-Young H, Vladislav PV, Park SE, Park MS, Jin SY, Jong-San C (2005) Bull Korean Chem Soc 26(11):1743–1748

    Article  Google Scholar 

  12. David RB, Kwang MC, Dae-Soo H, Jeong-Boon K, Park SE (2006) Catal Today 115:242–247

    Article  CAS  Google Scholar 

  13. Vladislav PV, Jong-San C, Park MS, Park SE (2002) Catal Commun 3:227–231

    Article  Google Scholar 

  14. Do-Young H, Vladislav PV, Young KH, Sung-Hwa J, Jong-San C (2008) Catal Today 131:140–145

    Article  CAS  Google Scholar 

  15. Christian N, Valeriya Z, Ignacio MC, Hero JH, Freek K, Michiel M (2013) Catal Sci Technol 3:519–526

    Article  Google Scholar 

  16. ShijuNR AnilkumarM, GokhaleSP RaoBS, Satyanarayana CVV (2011) Catal Sci Technol 1:1262–1270

    Article  CAS  Google Scholar 

  17. David RB, Kwang MC, Sang C, Han C, Abhishek B, Park SE (2007) J Mol Catal A: Chem 269:58–63

    Article  CAS  Google Scholar 

  18. Ryo W, Maiko IK, Kei M, Fumitaka S, Shuhei O, Yasushi S (2013) Green Environ Chem. 21:1–111

    Google Scholar 

  19. Jin J, Xiaoyan Z, Junhu W, Park SE (2013) J Mol Catal A: Chem 371:36–41

    Article  CAS  Google Scholar 

  20. Borges Soaresa MC, Barbosa FF, Morales Torres MA, Valentini A, dos Reis Albuquerque A, Sambrano JR, Pergher SBC, Essayem N, Braga TP (2019) Catal Sci Technol 9:2469–2484

    Article  Google Scholar 

  21. Rabindran JB, Balkrishna BT, Alam K, Ali AS, Al-Ali Luqman AA, Kunimasa S, Makiko A, Hidenori Y, Kiyoshi N, Tsuneji S, Katsuomi T, Sulaiman SAK (2011) Appl Catal A Gen 398:113–122

    Article  CAS  Google Scholar 

  22. Venkata RM, Venkateshwarlu V, Thirupathaiah K, Ashok RM, Nagaiah P, Murali K, David Raju B, Rama RKS (2017) Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.07.014

    Article  Google Scholar 

  23. Mahmoudi H, Mahmoudi M, Doustdar O, Jahangiri H, Tsolakis A, Gu S, Wyszynski ML (2017) Biofuels Eng 2:11–31

    Article  Google Scholar 

  24. Mansouri M, Atashi H, Mirzaei AA, Karimi MJ (2012) Thermodyn Catal 3:1–5

    Google Scholar 

  25. Ramudu P, Anand N, Mohan V, Muralidhar G, Sai Prasad PS, David Raju B, Rama Rao KS (2015) J Chem Sci 127(70):709

    Google Scholar 

  26. Tiago PB, Barbara MCS, Antonio NP, Herrera WT, Baggio Saitovitchb E, Antoninho V (2011) Catal Sci Technol 1:1383–1392

    Article  CAS  Google Scholar 

  27. Tope B, Balasamy RJ, Khurshid A, Atanda LA, Yahiro H, Shishido T, Takehira K, Al-Khattaf SS (2011) Appl Catal A Gen 407:118–126

    Article  CAS  Google Scholar 

  28. Xiao FG, Joong HK, Geon JK (2011) Catal Today 164:336–340

    Article  CAS  Google Scholar 

  29. Gonzáleza E, Moronta A (2004) Appl Catal A Gen 258:99–105

    Article  CAS  Google Scholar 

  30. Moronta A, Troconis ME, Gonzalez E, Moran C, Sanchez J, Gonzalez A, Quinonez J (2006) Appl Catal A Gen 310:199–204

    Article  CAS  Google Scholar 

  31. Chiou JYZ, Yang SY, Lai SY, KungHY CL, Tang CW, Wang CB (2013) Mod Res Catal 2:13–21

    Article  CAS  Google Scholar 

  32. Brabant C, Khodakov A, Constant AG (2017) C R Chimie 20:40–46

    Article  CAS  Google Scholar 

  33. Amornmart S, Anita H, James GG, Rachid O (2003) Catal Lett 91:1–2

    Article  Google Scholar 

  34. Meyer F, Hempelmann R, Mathur S, Veith M (1999) Mater J Chem 9:1755–1763

    Article  CAS  Google Scholar 

  35. Cai Z, Li J, Liew K, Hu J (2010) J Mol Catal A 330:10–17

    Article  CAS  Google Scholar 

  36. Bao X, Kong M, Lu W, Fei J, Zheng X (2014) J Eng Chem 23:795–800

    Google Scholar 

  37. Wang HY, Ruckenstein E (2001) Appl Catal A Gen 209:207–215

    Article  CAS  Google Scholar 

  38. Kumar M, Aberuagba F, Gupta JK, Rawat KS, Sharma LD, Murali Dhar G (2004) J Mol Catal A: Chem 213:217–223

    Article  CAS  Google Scholar 

  39. Dong W, Sikander HH, David Martin A, James AD (2013) Chem Commun 49:7040–7042

    Article  CAS  Google Scholar 

  40. Ledford JS, Young-Man K, Marwan H, Andrew P, David MH (1992) Analyst 117:323–327

    Article  CAS  Google Scholar 

  41. Sardar A, Noor Asmawati MZ, Mohammed J, Al-Marri J, Mahmoud MK (2017) Mater Today Commun 10:67–71

    Article  CAS  Google Scholar 

  42. Huang B, Cao K, Liu X, Qian L, Shan B, Chen R (2015) RSC Adv 5:71816–71823

    Article  CAS  Google Scholar 

  43. Hilmen AM, Schanke D, Hanssen KF, Holmen A (1999) Appl Catal A Gen 186:169–188

    Article  CAS  Google Scholar 

  44. Jacobs G, Chaney JA, Patterson PM, Das TK, Maillot JC, Davis BH (2004) Synchrotron Rad 11:414–422

    Article  CAS  Google Scholar 

  45. Profeti LPR, Ticianelli EA, Assaf EM (2009) Appl Catal A Gen 360:17–25

    Article  CAS  Google Scholar 

  46. Venkata RM, Nagaiah P, Prathap C, Vasikarappa K, Nagu A, David RB, Rama RKS (2018) Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.07.018

    Article  Google Scholar 

  47. Mohan V, Pramod CV, Suresh M, Hari Prasad Reddy K, David Raju B, Rama Rao KS (2012) Catal Commun 18:89–92

    Article  CAS  Google Scholar 

  48. Venkata Rao M, Nagaiah P, Pratap C, Gidyonu P, David Raju B, Rama Rao KS (2018) J Saudi Chem Soc JSCS-D-18-00121R1

Download references

Acknowledgements

The author, M.V.R is grateful to the University Grants Commission and Council of Scientific and Industrial Research, New Delhi, India respectively for the award of fellowship and the services provided by the Analytical Division; CSIR-IICT is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Venkata Rao Madduluri or Kamaraju Seetha Rama Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The article was originally published in SpringerLink with open access. With the author(s)’ decision to step back from Open Choice, the copyright of the article changed on July 2019 to © Springer Science+Business Media, LLC, part of Springer Nature 2019.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madduluri, V.R., Rao, K.S.R. Advantage of Co Embedded γ-Al2O3 Catalysts Over MgO and SiO2 Solid Oxides in the Selective Production of Styrene Monomer. Catal Lett 149, 3238–3252 (2019). https://doi.org/10.1007/s10562-019-02903-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02903-7

Keywords

Navigation