Skip to main content
Log in

The Catalytic Activity Enhancement of Commercial TiO2 and Nb2O5 Catalysts by Iron for Elemental Sulfur Production from H2S

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Commercial TiO2 and Nb2O5 catalysts were used to determine catalytic activities for selective oxidation of H2S to elemental sulfur. Fe@TiO2 and Fe@Nb2O5 catalysts (containing 10% iron by weight) were also prepared by wet impregnation method to enhance the catalytic activity. TiO2 anatase phase and Nb2O5 were mainly observed in the crystalline structure of TiO2 and Nb2O5 based catalysts, respectively. Catalytic activity tests were performed in a fixed-bed flow reactor at 250 °C using stoichiometric feed ratio. 30% and 28% H2S conversions were obtained with commercial TiO2 and Nb2O5 catalysts. Complete conversion of H2S was reached with Fe@TiO2 and Fe@Nb2O5 catalysts at the same reaction conditions for 400 min. of reaction time. 100% of H2S conversion was obtained with iron-containing catalysts in the reaction tests carried out at 200 °C and 300 °C of reaction temperatures. Fe@TiO2 and Fe@Nb2O5 catalysts showed high sulfur selectivity (≥ 95%) under all reaction conditions. Iron addition enhanced the Lewis acidity and redox property of the commercial catalysts and this may be the reason for increase in catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Eslek DD, Yasyerli S (2009) Ind Eng Chem Res 48:5223–5229

    Article  CAS  Google Scholar 

  2. Li KT, Yen CS, Shyu NS (1997) App Catal A 156:117–130

    Article  CAS  Google Scholar 

  3. Jung SJ, Kim MH, Chung JK, Moon MJ, Chung JS, Park DW, Woo HC (2003) Stud Surf Sci Catal 146:621–624

    Article  CAS  Google Scholar 

  4. Tasdemir HM, Yasyerli S, Yasyerli N (2015) Int J Hydrogen Energy 40:9989–10001

    Article  CAS  Google Scholar 

  5. Zhang X, Dou G, Wang Z, Li L, Wang Y, Wang H, Hao Z (2013) J Hazard Mater 260:104–111

    Article  CAS  PubMed  Google Scholar 

  6. Mikenin P, Zazhigalov S, Elyshev A, Lopatin S, Larina T, Cherepanova S, Pisarev D, Baranov D, Zagoruiko A (2016) Catal Commun 87:36–40

    Article  CAS  Google Scholar 

  7. Chun SW, Jang JY, Park DW, Woo HC, Chung JS (1998) Appl Catal B 16:235–243

    Article  CAS  Google Scholar 

  8. Bineesh KV, Kim DK, Cho HJ, Park DW (2010) J Ind Eng Chem 16:593–597

    Article  CAS  Google Scholar 

  9. Kim M, Ju WD, Kim KH, Hong SS (2006) Stud Surf Sci Catal 159:225–228

    Article  CAS  Google Scholar 

  10. Palma V, Barba D (2014) Int J Hydrogen Energy 39:21524–21530

    Article  CAS  Google Scholar 

  11. Palma V, Barba D (2014) Fuel 135:99–104

    Article  CAS  Google Scholar 

  12. Yasyerli S, Dogu G, Ar I, Dogu T (2004) Chem Eng Sci 59:4001–4009

    Article  CAS  Google Scholar 

  13. Yasyerli S, Dogu G, Dogu T (2006) Catal Today 117:271–278

    Article  CAS  Google Scholar 

  14. Bineesh KV, Kim MI, Park MS, Lee KY, Park DW (2011) Catal Today 175:183–188

    Article  CAS  Google Scholar 

  15. Bineesh KV, Kim MI, Lee GH, Selvaraj M, Park DW (2013) App Clay Sci 74:127–134

    Article  CAS  Google Scholar 

  16. Trueba M, Trasatti SP (2005) Eur J Inorg Chem 17:3393–3403

    Article  CAS  Google Scholar 

  17. Liu X, Truitt RE (1997) J Am Chem Soc 119:9856–9860

    Article  CAS  Google Scholar 

  18. Kim MI, Lee GH, Kim DW, Kang DH, Park DW (2014) Korean J Chem Eng 31:2162–2169

    Article  CAS  Google Scholar 

  19. Park DW, Kim BG, Kim MI, Kim I, Woo HC (2004) Catal Today 93–95:235–240

    Article  CAS  Google Scholar 

  20. Zhu H, Qin Z, Shan W, Shen W, Wang J (2004) J Catal 225:267–277

    Article  CAS  Google Scholar 

  21. Pereira CAS, Gonzales EAU (2014) Fuel 118:137–147

    Article  CAS  Google Scholar 

  22. Caceres CV, Fierro JL, Agudo AL, Soria J (1990) J Catal 122:113–125

    Article  CAS  Google Scholar 

  23. Shin MY, Park DW, Chung JS (2001) Appl Catal B 30:409–419

    Article  CAS  Google Scholar 

  24. Desponds O, Keiski RL, Somorjai GA (1993) Catal Lett 19:17–32

    Article  CAS  Google Scholar 

  25. Smits RHH, Seshan K, Ross JRH (1991) J Chem Soc Chem Commun 8:558–559

    Article  Google Scholar 

  26. Tanabe K (2003) Catal Today 78:65–77

    Article  CAS  Google Scholar 

  27. Lowell S, Shield J (1984) Powder Surface Area and Porosity. Chapman and Hall, New York

    Book  Google Scholar 

  28. Rouquerol J, Rouquerol F, Sing KSW (1998) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, San Diego

    Google Scholar 

  29. Senevirathne K, Pitigala S, Ramaraj S, Lachgar A, Williams RT (2017) Am J Nanomater 5:43–50

    Article  CAS  Google Scholar 

  30. Arachchige IU, Brock SL (2006) ACC Chem Res 40:801–809

    Article  CAS  Google Scholar 

  31. Brundle CR, Evans CA (1992) Materials characterization series. In: Wachs IE (ed) Characterization of catalytic materials. Manning Publications Co., Boston

    Google Scholar 

  32. Sankova N, Semeykina V, Selishchev D, Glazneva T, Parkhomchuk E, Larichev Y, Uvarov N (2018) Catal Lett 148:2391–2407

    Article  CAS  Google Scholar 

  33. Viswanadham B, Pavankumar V, Chary KVR (2014) Catal Lett 144:744–755

    Article  CAS  Google Scholar 

  34. Raba AM, Ruiz JB, Joya MR (2016) Mater Res 19(6):1381–1387

    Article  CAS  Google Scholar 

  35. Arbag H (2018) Int J Hydrogen Energy 43:6561–6574

    Article  CAS  Google Scholar 

  36. Yasyerli S, Aktas O (2012) J Fac Eng Archit Gazi Univ 27:49–58

    Google Scholar 

  37. Parola VL, Deganello G, Scire S, Venezia AM (2003) J of Solid State Chem 174:482–488

    Article  CAS  Google Scholar 

  38. Buniazet Z, Lorentz C, Cabiac A, Maury S, Loridant S (2018) Mol Catal 451:143–152

    Article  CAS  Google Scholar 

  39. Perez-Lopez G, Ramirez-Lopez R, Viveros T (2018) Catal Today 305:182–191

    Article  CAS  Google Scholar 

  40. Stosic D, Bennici S, Rakic V, Auroux A (2012) Catal Today 192:160–168

    Article  CAS  Google Scholar 

  41. Castro DC, Cavalcante RP, Jorge J, Martines MAU, Oliveira LCS, Casagrande GA, Machulek A (2016) J Braz Chem Soc 27:303–313

    CAS  Google Scholar 

  42. Nguyen P, Edouard D, Nhut JM, Ledoux MJ, Pham C, Huu CP (2007) Appl Catal B 76:300–310

    Article  CAS  Google Scholar 

  43. Zhang X, Tang Y, Qu S, Da J, Hao Z (2015) ACS Catal 5:1053–1067

    Article  CAS  Google Scholar 

  44. Tasdemir HM, Yagizatli Y, Yasyerli S, Yasyerli N, Dogu G (2017) J Fac Eng Archit Gazi 32:831–841

    Google Scholar 

  45. Lo JMH, Ziegler T, Clark PD (2011) J Phys Chem 115:1899–1910

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The contributions of Professor Sena Yasyerli and Professor Nail Yasyerli of Gazi University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mehmet Tasdemir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasdemir, H.M. The Catalytic Activity Enhancement of Commercial TiO2 and Nb2O5 Catalysts by Iron for Elemental Sulfur Production from H2S. Catal Lett 149, 473–485 (2019). https://doi.org/10.1007/s10562-018-2634-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2634-7

Keywords

Navigation