Skip to main content
Log in

Synthesis of Wool-Ball-Like ZSM-5 with Enlarged External Surfaces and Improved Diffusion: A Potential Highly-Efficient FCC Catalyst Component for Elevating Pre-cracking of Large Molecules and Catalytic Longevity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A hierarchical ZSM-5 zeolite composed of nano-sized MFI zeolite crystals was synthesized without using secondary template by a traditional hydrothermal procedure. The as-synthesized hierarchical ZSM-5 and a reference catalyst were both characterized by XRD, SEM, FT-IR, in situ infrared (IR) spectrometry of pyridine, NH3-TPD, N2 adsorption–desorption, intelligent gravimetric analyzer, and by thermogravimetry analyses. After examining and comparing the results, it is discovered that the hierarchical ZSM-5 catalyst displays excellent catalytic performance with an improved conversion of isopropylbenzene and a longer catalytic life because of its dramatically enlarged external surfaces. The results also display that the shortened diffusion path length contributes to enhancing the stability of the hierarchical catalyst by depressing the coking deposit during the catalytic cracking of n-octane.

Graphical Abstract

A wool-ball-like zeolite composed of nano-sized MFI crystals was synthesized without a secondary template by the traditional hydrothermal procedure. Nanocrystallization of crystal particles in the hierarchical ZSM-5 zeolite gives the catalyst an improved diffusion and a dramatically enhanced external surface which contributes to elevating pre-cracking of large molecules and catalytic longevity, and to offering a potential and high-efficiency FCC catalyst component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pérez-Ramírez J, Christensen CH, Egeblad K, Christensend CH, Groen JC (2008) Chem Soc Rev 37:2530

    Article  Google Scholar 

  2. Mintova S, Gilson JP, Valtchev V (2013) Nanoscale 5:6693

    Article  CAS  Google Scholar 

  3. Groen JC, Zhu WD, Brouwer S, Huynink SJ, Kapteijn F, Moulijn JA, Pérez-Ramírez J (2007) J Am Chem Soc 129:355

    Article  CAS  Google Scholar 

  4. Mitchell S, Michels NL, Kunze K, Pérez-Ramírez J (2012) Nat Chem 4:825

    Article  CAS  Google Scholar 

  5. Verboekend D, Pérez-Ramírez J (2011) Catal Sci Technol 1:879

    Article  CAS  Google Scholar 

  6. Verboekend D, Vilé G, Pérez-Ramírez J (2012) Adv Funct Mater 22:916

    Article  CAS  Google Scholar 

  7. Möller K, Yilmaz B, Jacubinas RM, Müller U, Bein T (2011) J Am Chem Soc 133:5284

    Article  Google Scholar 

  8. Möller K, Yilmaz B, Müller U, Bein T (2011) Chem Mater 23:4301

    Article  Google Scholar 

  9. Valtchev V, Balanzat E, Mavrodinova V, Diaz I, Fallah JE, Goupil JM (2011) J Am Chem Soc 133:18950

    Article  CAS  Google Scholar 

  10. Song W, Liu ZT, Liu LP, Skov AL, Song N, Xiong G, Zhu KK, Zhou XG (2015) RSC Adv 5:31195

    Article  CAS  Google Scholar 

  11. Hoang PH, Yoon KB, Kim DP (2012) RSC Adv 2:5323

    Article  CAS  Google Scholar 

  12. Xue ZT, Ma JH, Zhang T, Miao HX, Li RF (2012) Mater Lett 68:1

    Article  CAS  Google Scholar 

  13. Landau MV, Tavor D, Regev O, Kaliya ML, Herskowitz M, Valtchev V, Mintova S (1999) Chem Mater 11:2030

    Article  CAS  Google Scholar 

  14. Chen HY, Lee PS, Zhang XY, Lu D (2013) J Mater Res 28:1356

    Article  CAS  Google Scholar 

  15. Yoo WC, Kumar S, Penn RL, Tsapatsis M, Stein A (2009) J Am Chem Soc 131:12377

    Article  CAS  Google Scholar 

  16. Jacobsen CJH, Madsen C, Janssens TVW, Jakobsen HJ, Skibsted J (2000) Micropor Mesopor Mater 39:393

    Article  CAS  Google Scholar 

  17. Tao YS, Kanoh H, Kaneko K (2005) Langmuir 21:504

    Article  CAS  Google Scholar 

  18. Tao YS, Kanoh H, Kaneko K (2003) J Am Chem Soc 125:6044

    Article  CAS  Google Scholar 

  19. Tao YS, Hattori Y, Matumoto A, Kanoh H, Kaneko K (2005) J Phys Chem B 109:194

    Article  CAS  Google Scholar 

  20. Tao YS, Kanoh H, Kaneko K (2003) J Phys Chem B 107:10974

    Article  CAS  Google Scholar 

  21. Tang K, Wang YG, Song LJ, Duan LH, Zhang XT, Sun ZL (2006) Mater Lett 60:2158

    Article  CAS  Google Scholar 

  22. Hartmann M (2004) Angew Chem Int Ed 43:5880

    Article  CAS  Google Scholar 

  23. Tao YS, Kanoh H, Abrams L, Kaneko K (2006) Chem Rev 106:896

    Article  CAS  Google Scholar 

  24. Fang YM, Hu HQ, Chen GH (2008) Chem Mater 20:1670

    Article  CAS  Google Scholar 

  25. Xue ZT, Ma JH, Zheng JJ, Zhang T, Kang YH, Li RF (2012) Acta Mater 60:5712

    Article  CAS  Google Scholar 

  26. Song HJ, Kim JC, Roh HS, Lee CW, Park S, Kim DW, Hong KS (2014) Mater Charact 96:13

    Article  CAS  Google Scholar 

  27. Privman V, Goia DV, Park J, Matijevic E (1999) J Colloid Interface Sci 213:36

    Article  CAS  Google Scholar 

  28. Roh HS, Choi GK, An JS, Cho CM, Kim DH, Park IJ, Noh TH, Kim DW, Hong KS (2011) Dalton Trans 40:6901

    Article  CAS  Google Scholar 

  29. Mastropietro TF, Drioli E, Poerio T (2014) RSC Adv 4:21951

    Article  CAS  Google Scholar 

  30. Chaves TF, Pastore HO, Cardoso D (2012) Micropor Mesopor Mater 161:67

    Article  CAS  Google Scholar 

  31. Valtchev VP, Tosheva L (2013) Chem Rev 113:6734

    Article  CAS  Google Scholar 

  32. Zhao QQ, Qin B, Zheng JJ, Du YZ, Sun WF, Ling FX, Zhang XW, Li RF (2014) Chem Eng J 257:262

    Article  CAS  Google Scholar 

  33. Zhang XW, Guo Q, Qin B, Zhang ZZ, Ling FX, Sun WF, Li RF (2010) Catal Today 149:212

    Article  CAS  Google Scholar 

  34. Zheng JJ, Wang GS, Pan M, Guo DL, Zhao QQ, Li B, Li RF (2015) Micropor Mesopor Mater 206:114

    Article  CAS  Google Scholar 

  35. Emeis CA (1993) J Catal 141:347

    Article  CAS  Google Scholar 

  36. Chica A, Corma A (1999) J Catal 187:167

    Article  CAS  Google Scholar 

  37. Simon-Masseron A, Marques JP, Lopes JM, Ramôa Ribeiro F, Gener I, Guisnet M (2007) Appl Catal A Gen 316:75

    Article  CAS  Google Scholar 

  38. Zheng JJ, Zeng QH, Zhang YY, Wang Y, Ma JH, Zhang XW, Sun WF, Li RF (2010) Chem Mater 22:6065

    Article  CAS  Google Scholar 

  39. Ruthven DM, Brandani S, Eic M (2008) In: Karge HG, Weitkamp J (eds) Molecular sieves science and technology—adsorption and diffusion, vol 2. Springer, Berlin

    Google Scholar 

  40. Zheng JJ, Zhang HY, Pan M, Li B, Zhang Q, Kong QL, Liu ZP, Li RF (2015) J Inorg Mater 30:1161

    Article  CAS  Google Scholar 

  41. Kim J, Choi M, Ryoo R (2010) J Catal 269:219

    Article  CAS  Google Scholar 

  42. Zheng JJ, Yi YM, Wang WL, Guo K, Ma JH, Li RF (2013) Micropor Mesopor Mater 171:44

    Article  CAS  Google Scholar 

  43. Zheng JJ, Ma JH, Wang Y, Bai YD, Zhang XW, Li RF (2009) Catal Lett 130:672

    Article  CAS  Google Scholar 

  44. Martínez A, Peris E, Derewinski M, Burkat-Dulak A (2011) Catal Today 169:75

    Article  Google Scholar 

  45. Wang X, Li YX, Luo C, Liu J, Chen BH (2013) RSC Adv 3:6295

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Joint Funds of the National Natural Science Foundation of China–China Petroleum and Chemical Corporation (the State Key Program Grant No. U1463209); the National Natural Science Foundation of China (Grant Nos. 21371129; 21376157; 51272169).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajun Zheng or Ruifeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Zhang, H., Liu, Y. et al. Synthesis of Wool-Ball-Like ZSM-5 with Enlarged External Surfaces and Improved Diffusion: A Potential Highly-Efficient FCC Catalyst Component for Elevating Pre-cracking of Large Molecules and Catalytic Longevity. Catal Lett 146, 1457–1469 (2016). https://doi.org/10.1007/s10562-016-1776-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1776-8

Keywords

Navigation