Skip to main content
Log in

Caterpillar-shaped hierarchical ZSM-5 resulted from the self-assembly of regularly primary nano-sized zeolite crystals

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Hierarchical ZSM-5 with a caterpillar-shaped morphology is hydrothermally synthesized, and characterized by XRD, SEM, TEM, N2 adsorption-desorption, and NH3-TPD. The synthesis parameters influence on the formation of the caterpillar-shaped hierarchical ZSM-5 are investigated and discussed in details. The results suggest that nano-sized ZSM-5 zeolite crystals is yielded from an appropriate precursor and then forms the caterpillar-shaped hierarchical ZSM-5 by in-situ self-assembly of the primary nanocrystals. SEM and TEM images display that the primary crystals in the caterpillar-shaped zeolite samples formed by self-assembly along b-axis of MFI zeolite have a size of about 100 nm. Catalytic cracking of triisopropylbenzene (TIPB) is selected as a probe reaction so as to investigate the catalytic performances of the as-synthesized caterpillar-shaped hierarchical ZSM-5 zeolite. The results show that the as-synthesized hierarchical ZSM-5 zeolite with the increased external surfaces exhibits an elevated catalytic activity during the catalytic cracking of TIPB, and the corresponding traditional ZSM-5 zeolite displays very little activity because of the small external surfaces. The results also show that for the hierarchical ZSM-5-40-5.32-2.1, due to the high external surfaces and the interpenetrated hierarchical pore system, a multi-stage cracking process for the reaction TIPB molecule is detected. That may offer a potential highly effective catalyst for the catalytic cracking of bulky reactant molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Masoumifard, R. Guillet-Nicolas, F. Kleitz, Synthesis of Engineered Zeolitic Materials: from classical Zeolites to Hierarchical Core-Shell materials. Adv. Mater. 30, 1704439–1704479 (2018)

    Article  Google Scholar 

  2. C. Wang, L. Zhang, X. Huang, Y. Zhu, G. Li, Q. Gu, J. Chen, L. Ma, X. Li, Q. He, J. Xu, Q. Sun, C. Song, M. Peng, J. Sun, D. Ma, Maximizing Sinusoidal channels of HZSM-5 for high shape-selectivity to P-xylene. Nat. Commun. 10, 1–8 (2019)

    Google Scholar 

  3. A. Primo, H. Garcia, Zeolites as catalysts in oil refining. Chem. Soc. Rev. 43, 7548–7561 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. C. Peng, Z. Liu, Y. Yonezawa, N. Linares, Y. Yanaba, C. Trujillo, T. Okubo, T. Matsumoto, J. García-Martínez, T. Wakihara, Testing the limits of Zeolite Structural Flexibility: Ultrafast introduction of Mesoporosity in Zeolites. J. Mater. Chem. A 8, 735–742 (2020)

    Article  CAS  Google Scholar 

  5. M. Pan, J. Zheng, Y. Liu, W. Ning, H. Tian, R. Li, Construction and practical application of a novel Zeolite Catalyst for hierarchically cracking of Heavy Oil. J. Catal. 369, 72–85 (2019)

    Article  CAS  Google Scholar 

  6. M. Pan, J. Zheng, Y. Ou, Q. Wang, L. Zhang, R. Li, A Facile Approach for Construction of Hierarchical Zeolites via Kinetics. Micropor. Mesopor. Mat. 316, 110983 (2021)

    Article  CAS  Google Scholar 

  7. Y. Du, X. Yang, W. Ning, Q. Kong, B. Qing, J. Zheng, W. Li, R. Li, Sphere-like hierarchical Y Zeolite fabricated by steam-assisted Conversion Method. J. Inor Mater. 34, 225–232 (2019)

    Article  Google Scholar 

  8. B. Qin, Q. Kong, Z. Liu, X. Yang, W. Ning, Y. Du, J. Zheng, Synthesis of Monolith Hierarchical Sodalite Zeolite composed of nanocrystals by steam-assisted Conversion Method, Chin. J. Inor Chem. 34, 2025–2031 (2018)

    CAS  Google Scholar 

  9. M. Shamzhy, M. Opanasenko, P. Concepción, A. Martínez, New Trends in Tailoring active sites in Zeolite-based catalysts. Chem. Soc. Rev. 48, 1095–1149 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. J. Groen, W. Zhu, S. Brouwer, S. Huynink, F. Kapteijn, J. Moulijn, J. Pérez-Ramírez, Direct demonstration of enhanced diffusion in Mesoporous ZSM-5 Zeolite Obtained via Controlled Desilication. J. Am. Chem. Soc. 129, 355–360 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. J. Zheng, Q. Zeng, Y. Zhang, Y. Wang, J. Ma, X. Zhang, W. Sun, R. Li, Hierarchical porous Zeolite Composite with a Core-Shell structure fabricated using β-zeolite crystals as nutrients as Well as Cores. Chem. Mater. 22, 6065–6074 (2010)

    Article  CAS  Google Scholar 

  12. J. Zheng, H. Zhang, Y. Liu, G. Wang, Q. Kong, M. Pan, H. Tian, R. Li, Synthesis of wool-ball-like ZSM-5 with enhanced external Surfaces and Improved Diffusion: a potential high-efficient FCC Catalyst Component for elevating pre-cracking of large molecules and Catalytic Longevity. Catal. Lett. 146, 1457–1469 (2016)

    Article  CAS  Google Scholar 

  13. Z. Qin, L. Hafiz, Y. Shen, S. Daele, P. Boullay, V. Ruaux, S. Mintova, J. Gilson, V. Valtchev, Defect-engineered Zeolite Porosity and Accessibility. J. Mater. Chem. A 8, 3621–3631 (2020)

    Article  CAS  Google Scholar 

  14. V. Valtchev, G. Majano, S. Mintova, J. Pérez-Ramírez, Tailored crystalline Microporous materials by Post-Synthesis Modification. Chem. Soc. Rev. 42, 263–290 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. J. Groen, J. Moulijn, J. Pérez-Ramírez, Desilication: on the Controlled Generation of Mesoporosity in MFI Zeolites. J. Mater. Chem. 16, 2121–2131 (2006)

    Article  CAS  Google Scholar 

  16. J. Groen, J. Jansen, J. Moulijn, J. Pérez-Ramírez, Optimal aluminum-assisted Mesoporosity Development in MFI Zeolites by Desilication. J. Phys. Chem. B 108, 13062–13065 (2004)

    Article  CAS  Google Scholar 

  17. K. Jong, J. Zečević, H. Friedrich, P. Jongh, M. Bulut, S. van Donk, R. Kenmogne, A. Finiels, V. Hulea, F. Fajula, Zeolite Y crystals with Trimodal Porosity as Ideal Hydrocracking catalysts. Angew Chem. Int. Ed. 49, 10074–10078 (2010)

    Article  Google Scholar 

  18. M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, E. Kikuchi, M. Matsukata, Formation of Uniform Mesopores in ZSM-5 Zeolite through Treatment in Alkaline Solution. Chem. Lett. 29, 882–883 (2000)

    Article  Google Scholar 

  19. A. Janssen, A. Koster, K. Jong, Three-Dimensional Transmission Electron microscopic observations of Mesopores in Dealuminated Zeolite Y. Angew Chem. Int. Ed. 40, 1102–1104 (2001)

    Article  CAS  Google Scholar 

  20. R. Giudici, H. Kouwenhoven, R. Prins, Comparison of nitric and oxalic acid in the dealumination of Mordenite. Appl. Catal. A: Gen. 203, 101–110 (2000)

    Article  CAS  Google Scholar 

  21. X. Yang, Y. Liu, C. Yan, G. Chen, Solvent-free preparation of hierarchical 4A zeolite monoliths: role of experimental conditions. J. Cryst. Growth 528, 125286–125298 (2019)

    Article  CAS  Google Scholar 

  22. C. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, Mesoporous Zeolite Single Crystals, J. Am. Chem. Soc. 122, 7116–7117 (2000)

    CAS  Google Scholar 

  23. I. Schmidt, A. Boisen, E. Gustavsson, K. Ståhl, S. Pehrson, S. Dahl, A. Carlsson, C. Jacobsen, Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals, Chem. Mater. 13, 4416–4418 (2001)

    CAS  Google Scholar 

  24. C. Zhang, H. Chen, X. Zhang, Q. Wang, TPABr-grafted MWCNT as Bifunctional Template to synthesize hierarchical ZSM-5 Zeolite. Mater. Lett. 197, 111–114 (2017)

    Article  CAS  Google Scholar 

  25. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Stable single-unit-cell nanosheets of Zeolite MFI as active and long-lived catalysts. Nature. 461, 246–249 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. M. Choi, H. Cho, R. Srivastava, C. Venkatesan, D. Choi, R. Ryoo, Amphiphilic organosilane-directed synthesis of Crystalline Zeolite with Tunable Mesoporosity. Nat. Mater. 5, 718–723 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. L. Xu, X. Ji, S. Li, Z. Zhou, X. Du, J. Sun, F. Deng, S. Che, P. Wu, Self-assembly of Cetyltrimethylammonium Bromide and Lamellar Zeolite Precursor for the Preparation of hierarchical MWW Zeolite. Chem. Mater. 28, 4512–4521 (2016)

    Article  CAS  Google Scholar 

  28. M. Pileni, The role of Soft Colloidal Templates in Controlling the size and shape of Inorganic Nanocrystals. Nat. Mater. 2, 145–150 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. M. Li, I. Oduro, Y. Zhou, Y. Huang, Y. Fang, Amphiphilic organosilane and seed assisted hierarchical ZSM-5 synthesis: crystallization process and structure. Micropor. Mesopor. Mater. 221, 108–116 (2016)

    Article  CAS  Google Scholar 

  30. L. Wu, E. Hensen, Comparison of mesoporous SSZ-13 and SAPO-34 zeolite catalysts for the methanol-to-olefins reaction. Catal. Today 235, 160–168 (2014)

    Article  CAS  Google Scholar 

  31. J. Zhou, Z. Hua, Z. Liu, W. Wu, Y. Zhu, J. Shi, Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. ACS Catal. 1, 287–291 (2011)

    Article  CAS  Google Scholar 

  32. L. Zhang, X. Sun, M. Pan, X. Yang, Y. Liu, J. Sun, Q. Wang, J. Zheng, Y. Wang, J. Ma, W. Li, R. Li, Interfacial Effects between Carbon Nanotube Templates and Precursors on fabricating a Wall-Crystallized Hierarchical Pore System in Zeolite crystals. J. Mater. Sci. 55, 10412–10426 (2020)

    Article  CAS  Google Scholar 

  33. R. White, A. Fischer, C. Goebel, A. Thomas, A sustainable template for Mesoporous Zeolite Synthesis. J. Am. Chem. Soc. 136, 2715–2718 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. Q. Wang, L. Zhang, Z. Yao, Y. Guo, Z. Gao, J. Zheng, W. Li, B. Fan, Y. Wang, S. Chen, R. Li, Synthesis of loosely aggregating Polycrystalline ZSM-5 with luxuriant Mesopore structure and its hierarchically cracking for Bulky Reactants. Mater. Chem. Phy 243, 122610–122617 (2020)

    Article  CAS  Google Scholar 

  35. Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Mesopore-modified Zeolites: Preparation, characterization, and applications. Chem. Rev. 106, 896–910 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. Y. Tao, H. Kanoh, K. Kaneko, Synthesis of Mesoporous Zeolite A by Resorcinol-Formaldehyde Aerogel Templating. Langmuir. 21, 504–507 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. F. Feng, T. Dou, Y. Xiao, J. Cao, Effect of Solvent on Zeolite Synthesis. J. Energ. Chem. 5, 351–356 (1996)

    CAS  Google Scholar 

  38. D. Zhang, R. Wang, X. Yang, Application of fractional Factorial Design to ZSM-5 synthesis using ethanol as Template. Micropor. Mesopor. Mater. 126, 8–13 (2009)

    Article  CAS  Google Scholar 

  39. K. Carvalho, E. Urquieta-Gonzalez, Microporous–mesoporous ZSM-12 Zeolites: synthesis by using a Soft Template and Textural, Acid and Catalytic Properties. Catal. Today 243, 92–102 (2015)

    Article  CAS  Google Scholar 

  40. P. Llewellyn, J. Coulomb, Y. Grillet, J. Patarin, H. Lauter, H. Reichert, J. Rouquerol, Adsorption by MFI-Type Zeolites examined by Isothermal Microcalorimetry and Neutron Diffraction, argon, Krypton, and methane. Langmuir. 9, 1846–1851 (1993)

    Article  CAS  Google Scholar 

  41. H. Tao, H. Yang, Y. Zhang, J. Ren, X. Liu, Y. Wang, G. Lu, Space-confined synthesis of Nanorod oriented-assembled hierarchical MFI Zeolite Microspheres. J. Mater. Chem. A 1, 13821–13827 (2013)

    Article  CAS  Google Scholar 

  42. H. Zhang, Z. Hu, L. Huang, H. Zhang, K. Song, L. Wang, Z. Shi, J. Ma, Y. Zhuang, W. Shen, Y. Zhang, H. Xu, Y. Tang, Dehydration of glycerol to Acrolein over hierarchical ZSM-5 zeolites: Effects of Mesoporosity and Acidity. ACS Catal. 5, 2548–2558 (2015)

    Article  CAS  Google Scholar 

  43. Y. Quan, S. Li, S. Wang, Z. Li, M. Dong, Z. Qin, G. Chen, Z. Wei, W. Fan, J. Wang, Synthesis of Chainlike ZSM-5 zeolites: determination of synthesis parameters, mechanism of chainlike morphology formation, and their performance in selective adsorption of Xylene Isomers. ACS Appl. Mater. Interfaces 9, 14899–14910 (2017)

    Article  CAS  PubMed  Google Scholar 

  44. L. Jin, T. Xie, S. Liu, Y. Li, H. Hu, Controllable synthesis of Chainlike Hierarchical ZSM-5 templated by sucrose and its Catalytic performance. Catal. Commun. 75, 32–36 (2016)

    Article  CAS  Google Scholar 

  45. H. Chen, M. Yang, W. Shang, Y. Tong, B. Liu, X. Han, Organosilane Surfactant-Directed synthesis of hierarchical ZSM-5 zeolites with Improved Catalytic performance in methanol-to-propylene reaction. Ind. Eng. Chem. Res. 57, 10956–10966 (2018)

    Article  CAS  Google Scholar 

  46. A. Koekkoek, C. Tempelman, V. Degirmenci, M. Guo, Z. Feng, C. Li, E. Hensen, Hierarchical Zeolites prepared by Organosilane Templating: a study of the synthesis mechanism and Catalytic Activity. Catal. Today 168, 96–111 (2011)

    Article  CAS  Google Scholar 

  47. P. Miao, K. Li, J. Fan, N. Xu, X. Zhu, C. Li, Efficient Ring-opening reaction of Tetralin over Nanosized ZSM-5 Zeolite: Effect of SiO2/Al2O3 ratio and reaction Condition. Energy Fuels 33, 9480–9490 (2019)

    Article  CAS  Google Scholar 

  48. M. Guisnet, P. Magnoux, Organic chemistry of coke formation. Appl. Catal. A Gen. 212, 83–96 (2001)

    Article  CAS  Google Scholar 

  49. P. Tian, Y. Wei, M. Ye, Z. Liu, Methanol to olefins (MTO): from Fundamentals to commercialization. ACS Catal. 5, 1922–1938 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Key R&D Program of China (2020YFB0606405) and China Petroleum & Chemical Corporation (121014-2).

Author information

Authors and Affiliations

Authors

Contributions

Xiaona Yang and Xiaosen Ma wrote the main manuscript text; Xuchang Wang, Licheng Zhang, Yanchao Liu and Quanhua Wang prepared figures; Yanze Du, Bo Qin, Yan Wang and Jiajun Zheng checked and corrected. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Bo Qin or Jiajun Zheng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Ma, X., Wang, X. et al. Caterpillar-shaped hierarchical ZSM-5 resulted from the self-assembly of regularly primary nano-sized zeolite crystals. J Porous Mater 30, 1543–1553 (2023). https://doi.org/10.1007/s10934-023-01444-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01444-0

Keywords

Navigation