Skip to main content
Log in

Pd Loaded TiO2 Nanotubes for the Effective Catalytic Reduction of p-Nitrophenol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Titania nanotubes decorated with Pd nanoparticles were synthesised by a hydrothermal method. The increased amounts of Pd concentration is found to facilitate the anatase to rutile crystalline phase transformation as well as in collapse of the morphology as revealed by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy. The presence of metallic as well as the oxidized form (PdO2) of surface metal ions was characterized by using XPS. The catalytic activity of the Pd loaded titania nanotubes has been demonstrated by studying the reduction of p-nitrophenol to p-aminophenol. The 1.0 mol% Pd loaded titania nanotubes has been found to exhibit optimum catalytic activity (rate constant of 0.7072 min−1) while those with higher amounts of Pd loading showed lower catalytic activity. It is observed that retention of tubular morphology and higher anatase content play significant roles in their catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang R, Elzatahry AA, Al-Deyab SS, Zhao D (2012) Nano Today 7:344

    Article  Google Scholar 

  2. Hamilton JWJ, Byrne JA, Dunlop PSM, Dionysiou DD, Pelaez M, O’Shea K, Synnott D, Pillai SC (2014) J Phys Chem C 118:12206

    Article  CAS  Google Scholar 

  3. Keane DA, McGuigan KG, Ibanez PF, Polo-Lopez MI, Byrne JA, Dunlop PSM, O’Shea K, Dionysiou DD, Pillai SC (2014) Catal Sci Technol 4:1211

    Article  CAS  Google Scholar 

  4. Vijayan BK, Dimitrijevic NM, Wu J, Gray KA (2010) J Phys Chem C 114:21262

    Article  CAS  Google Scholar 

  5. Vijayan BK, Dimitrijevic NM, Rajh TK, Gray K (2010) J Phys Chem C 114:12994

    Article  CAS  Google Scholar 

  6. Baiju KV, Shajesh P, Wunderlich W, Mukundan P, Kumar SR, Warrier KGK (2007) J Mol Catal A: Chem 276:41

    Article  CAS  Google Scholar 

  7. Baiju KV, Periyat P, Pillai PK, Mukundan P, Warrier KGK, Wunderlich W (2007) Mater Lett 61:1751

    Article  CAS  Google Scholar 

  8. Banerjee S, Dionysiou DD, Pillai SC (2015) Appl Catal B 176–177:396

    Article  Google Scholar 

  9. Banerjee S, Pillai SC, Falaras P, O’Shea KE, Byrne JA, Dionysiou DD (2014) J Phys Chem Lett 5:2543

    Article  CAS  Google Scholar 

  10. Martínez LM, de Correa MTC, Odriozola JA, Centeno MA (2006) J Mol Catal A: Chem 253:252

    Article  Google Scholar 

  11. Kang TG, Kim JH, Kang SG, Seo G (2000) Catal Today 59:87

    Article  CAS  Google Scholar 

  12. Hu F, Ding F, Song S, Shen PK (2006) J Power Sour 163:415

    Article  CAS  Google Scholar 

  13. Mahmoud MHH, Ismail AA, Sanad MMS (2012) Chem Eng J 187:96

    Article  CAS  Google Scholar 

  14. Zheng S, Gao L (2003) Mater Chem Phys 78:512

    Article  CAS  Google Scholar 

  15. Li Y, Xu B, Fan Y, Feng N, Qiu A, He JMJ, Yang H, Chen Y (2004) J Mol Catal A: Chem 216:107

    Article  CAS  Google Scholar 

  16. Quisenberry LR, Loetscher LH, Boyd JE (2009) Catal Commun 10:1417

    Article  CAS  Google Scholar 

  17. Han CH, Hong DW, Kim IJ, Gwak J, Han SD, Singh KC (2007) Sens Actuators B 128:320

    Article  CAS  Google Scholar 

  18. Shahreen L, Chase GG, Turinske AJ, Nelson SA, Stojilovic N (2013) Chem Eng J 225:340

    Article  CAS  Google Scholar 

  19. Yang MQ, Pan X, Zhang N, Xu YJ (2013) Cryst Eng Commun 15:6819

    Article  CAS  Google Scholar 

  20. El-Sheikh SM, Ismail AA, Al-Sharab JF (2013) New J Chem 37:2399

    Article  CAS  Google Scholar 

  21. Pradhan N, Pal A, Pal T (2001) Langmuir 17:1800

    Article  CAS  Google Scholar 

  22. Jin Z, Xiao M, Bao Z, Wang P, Wang J (2012) Angew Chem Int Ed 51:6406

    Article  CAS  Google Scholar 

  23. Teranishi T, Miyake M (1998) Chem Mater 10:594

    Article  CAS  Google Scholar 

  24. Hanaor DH, Sorrell C (2011) J Mater Sci 46:855

    Article  CAS  Google Scholar 

  25. Hishita S, Mutoh I, Koumoto K, Yanagida H (1983) Ceram Int 9:61

    Article  CAS  Google Scholar 

  26. Ohsaka T, Izumi F, Fujiki Y (1978) J Raman Spectrosc 7:321

    Article  Google Scholar 

  27. Berger H, Tang H, Lévy F (1993) J Cryst Growth 130:108

    Article  CAS  Google Scholar 

  28. Asthana A, Shokuhfar T, Gao Q, Heiden PA, Friedrich C, Yassar RS (2010) Adv Sci Lett 3:557

    Article  CAS  Google Scholar 

  29. Wang YQ, Hu GQ, Duan XF, Sun HL, Xue QK (2002) Chem Phys Lett 365:427

    Article  CAS  Google Scholar 

  30. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Hand book of X-ray electron spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, United Stales of America 72–73

  31. Etacheri V, Seery MK, Hinder SJ, Pillai SC (2011) Adv Funct Mater 21:3744

    Article  CAS  Google Scholar 

  32. Xiao P, Fang H, Cao G, Zhang Y, Zhang X (2010) Thin Solid Films 518:7152

    Article  CAS  Google Scholar 

  33. Carley AF, Roberts JC, Roberts MW (1990) Surf Sci 225:L39

    Article  CAS  Google Scholar 

  34. Westerstrom R, Messing ME, Blomberg S, Hellman A, Gronbeck H, Gustafson J (2011) Phys Rev B 83:115440

    Article  Google Scholar 

  35. Kim KS, Gossmann AF, Winograd N (1974) Anal Chem 46:197

    Article  CAS  Google Scholar 

  36. Otto K, Haack LP, deVries JE (1992) Appl Catal B 1:1

    Article  CAS  Google Scholar 

  37. Domashevskaya EP, Ryabtsev SV, Turishchev SY, Kashkarov VM, Yurakov YA, Chuvenkova OA, Shchukarev AV (2008) J Struct Chem 49:80

    Article  Google Scholar 

  38. Guinebretiene R (2006) X-ray diffraction by polycrystalline materials. Cachan, Lavoisier

    Google Scholar 

  39. Gilbert JB, Rubner MF, Cohen RE (2013) Proc Natl Acad Sci USA 110:6651

    Article  CAS  Google Scholar 

  40. Zeng J, Zhang Q, Chen J, Xia Y (2009) Nano Lett 10:30

    Article  Google Scholar 

  41. Ge J, Zhang Q, Zhang T, Yin Y (2008) Angew Chem Int Ed 47:8924

    Article  CAS  Google Scholar 

  42. Wu SH, Tseng CT, Lin YS, Lin CH, Hung Y, Mou CY (2011) J Mater Chem 21:789

    Article  CAS  Google Scholar 

  43. Endo T, Yoshimura T, Esumi K (2005) J Colloid Interface Sci 286:602

    Article  CAS  Google Scholar 

  44. Singla ML, Negi A, Mahajan V, Singh KC, Jain DVS (2007) Appl Catal A 323:51

    Article  CAS  Google Scholar 

  45. Huang J, Yan C, Huang K (2009) J Colloid Interface Sci 332:60

    Article  CAS  Google Scholar 

  46. Javaid R, Kawasaki SI, Suzuki A, Suzuki TM (2013) Beilstein J Org Chem 9:1156

    Article  CAS  Google Scholar 

  47. Fenger R, Fertitta E, Kirmse H, Thunemann AF, Rademann K (2012) Phys Chem Chem Phys 14:9343

    Article  CAS  Google Scholar 

  48. Johnson JA, Makis JJ, Marvin KA, Rodenbusch SE, Stevenson KJ (2013) J Phys Chem C 117:22644

    Article  CAS  Google Scholar 

  49. Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) J Phys Chem C 111:4596

    Article  CAS  Google Scholar 

  50. Zhang N, Xu Y-J (2013) Chem Mater 25:1979

    Article  Google Scholar 

  51. Yu T, Zeng J, Lim B, Xia Y (2010) Adv Mater 22:5188

    Article  CAS  Google Scholar 

  52. Zhang Z, Xiao F, Xi J, Sun T, Xiao S, Wang H (2014) Sci Rep 4:4053

    Google Scholar 

  53. Murugan E, Vimala G (2013) J Colloid Interface Sci 396:101

    Article  CAS  Google Scholar 

  54. Gatard S, Salmon L, Deraedt C, Ruiz J, Astruc D, Bouquillon S (2014) Eur J Inorg Chem 2014:4369

    Article  CAS  Google Scholar 

  55. Esumi K, Isono R, Yoshimura T (2004) Langmuir 20:237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from DST-SERB fast track (SR/FT/CS-122/2011). VK and MN acknowledge UGC for research fellowship. SP wishes to acknowledge financial support from the U.S. Ireland R&D Partnership Initiative, Science Foundation Ireland (SFI-Grant Number 10/US/I1822 (T)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiju K. Vijayan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalarivalappil, V., Divya, C.M., Wunderlich, W. et al. Pd Loaded TiO2 Nanotubes for the Effective Catalytic Reduction of p-Nitrophenol. Catal Lett 146, 474–482 (2016). https://doi.org/10.1007/s10562-015-1663-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1663-8

Key words

Navigation