Skip to main content
Log in

Nickel NPs @N-doped titania: an efficient and recyclable heterogeneous nanocatalytic system for one-pot synthesis of pyrano[2,3-d]pyrimidines and 1,8-dioxo-octahydroxanthenes

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Catalysis holds a very important and promising place in chemical industry. In a typical chemical transformation, the use of a catalyst reduces the reagent-based waste and enhances the reaction selectivity, thereby minimizing the chances of getting any side product. In the recent years, the introduction of nanotechnology in the field of catalysis has further revolutionized it. It is the extremely small size, shape and remarkably large surface-area-to-volume ratio which sets apart a nanocatalyst from its ordinary bulk form and imparts it unique catalytic properties. In the present work, we report the application of heterogeneous nickel nanoparticles in the synthesis of some biologically important heterocyclic compounds. In brief, we doped titania nanostructures with nitrogen and then used them as a support material for immobilizing nickel nanoparticles onto them. The nanoparticles of nickel were prepared by the chemical reduction of nickel acetate. The catalyst thus prepared, i.e., nickel nanoparticles loaded over nitrogen-doped titania (nickel NPs @N-doped TiO2), was then explored for its catalytic activity toward the synthesis of pyrano[2,3-d]pyrimidines and 1,8-dioxo-octahydroxanthenes. The surface and the elemental composition of the catalyst was studied by SEM–EDX analysis. TEM analysis was done to study the internal morphology and the size of the nanostructures formed. The other studies included TGA, FTIR and XPS which gave information regarding thermal stability, presence of nitrogen in the titania framework and oxidation state of the nickel nanoparticles, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Scheme 2
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Agarwal, A. Ramesh, N. Goyal, P.M. Chauhan, S. Gupta, Dihydropyrido[2,3-d]pyrimidines as a new class of antileishmanial agents. Bioorg. Med. Chem. 13(24), 6678–6684 (2005)

    Article  CAS  Google Scholar 

  2. A. Akbari, M. Amini, A. Tarassoli, B. Eftekhari-Sis, N. Ghasemian, E. Jabbari, Nanostruct. Nano-obj. 14, 19 (2018)

    CAS  Google Scholar 

  3. A.R. Bhat, A.H. Shalla, R.S. Dongre, Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pdsyrano[2,3-d]pyrimidine-6-carboxylate as potent in vitro antibacterial and antifungal activity. J. Adv. Res 6(6), 941–948 (2015)

    Article  CAS  Google Scholar 

  4. A.R. Bhat, A.H. Shalla, R.S. Dongre, Synthesis of new annulated pyrano[2,3-d]pyrimidine derivatives using organocatalyst (DABCO) in aqueous media. J. Saudi. Chem. Soc. 21(1), S305–S310 (2017)

    Article  CAS  Google Scholar 

  5. A.D. Broom, J.L. Shim, G.L. Anderson, Pyrido[2,3-d]pyrimidines. Synthetic studies leading to various oxopyrido[2,3-d]pyrimidines. J. Org. Chem. 41(7), 1095–1099 (1976)

    Article  CAS  Google Scholar 

  6. O. Bruno, S. Schenone, A. Ranise, E. Barocelli, M. Chiavarini, V. Ballabeni, S. Bertoni, Synthesis and pharmacological screening of novel non-acidic gastroprotective antipyretic anti-inflammatory agents with anti-platelet properties. Arzneim. Forsch. 50(2), 140–147 (2000)

    CAS  Google Scholar 

  7. S. Chainarong, L. Sikong, S. Pavasupree, S. Niyomwas, Synthesis and characterization of nitrogen –doped TiO2 nanomaterials for photocatalytic activity under visible light. Energy Procedia 9, 418–427 (2011)

    Article  CAS  Google Scholar 

  8. S. Chandra, A. Kumar, P.K. Tomar, Synthesis of Ni nanoparticles and their characterization. J. Saudi. Chem. Soc. 18(5), 437–442 (2014)

    Article  CAS  Google Scholar 

  9. Y. Cong, J. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. 111(19), 6976–6982 (2017)

    Google Scholar 

  10. A.N. Dadhania, V.K. Patel, D.K. Raval, Ionic liquid promoted facile and green synthesis of 1,8-dioxo-octahydroxanthene derivatives under microwave irradiation. J. Saudi. Chem. Soc. 21, S163–S169 (2017)

    Article  CAS  Google Scholar 

  11. J. Davoll, J. Clarke, E.F. Elslager, Folate antagonists: 4: antimalarial and anti-metabolite effects of 2,4-diamino-6-((benzyl)amino)pyrido(2,3-d)-pyrimidines. J. Med. Chem. 15(8), 837–839 (1972)

    Article  CAS  Google Scholar 

  12. J.A. Delgado, C. Claver, S. Castillon, D.C. Ferre, V.V. Ordomsky, C. Godard, Fischer-Tropsch synthesis catalysed by small TiO2 supported cobalt nanoparticles prepared by sodium borohydride reduction. Appl. Catal. A: General. 513, 39 (2016)

    Article  CAS  Google Scholar 

  13. J. Deng, S. Xu, W. Hu, X. Xun, L. Zheng, M. Su, Tumour targeted, stealthy and degradable bismuth nanoparticles for enhanced X-Ray radiation therapy of breast cancer. Biomaterials 154, 24–33 (2018)

    Article  CAS  Google Scholar 

  14. S.V. Deshmukh, G.K. Kadam, S.V. Shisodia, M.V. Katarina, S.B. Vbale, R.P. Pawar, Int. J. Phys. Chem. Sci. 7, 75 (2018)

    CAS  Google Scholar 

  15. I. Devi, B.S.D. Kumar, P.J. Bhuyan, A novel three-component one-pot synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines using microwave heating in solid state. Tetrahedron Lett. 44(45), 8307–8310 (2003)

    Article  CAS  Google Scholar 

  16. C.W. Dunnil, I.P. Parkin, Nitrogen-doped TiO2 thin films: photocatalytic applications for healthcare environments. Dalton Trans. 40(8), 1635–1640 (2011)

    Article  Google Scholar 

  17. H.A. Elazab, M.A. Sadek, T.T.E. Idreesy, Microwave-assisted synthesis of palladium nanoparticles supported on copper oxide in aqueous medium as an efficient catalyst for Suzuki cross-coupling reaction. Adsorpt. Sci. Technol. 36, 1352 (2018)

    Article  CAS  Google Scholar 

  18. R. Ghashghaei, S. Ghassamipour, A green procedure for synthesis of xanthenes derivatives: Micellar solution of sodium dodecylphosphonate catalyzes condensation reaction of aldehydes and β-naphthol in aqueous media. Iran. J. Catal. 4(1), 49–55 (2014)

    CAS  Google Scholar 

  19. A. Ghatak, S. Khan, R. Roy, S. Bhar, Chemoselective and ligand-free synthesis of diaryl ethers in aqueous medium using recyclable alumina-supported nickel nanoparticles. Tetrahedron Lett. 55(51), 7082–7088 (2014)

    Article  CAS  Google Scholar 

  20. I. del Hierro, Y. Pérez, M. Fajardo, Silanization of Iron Oxide Magnetic Nanoparticles with ionic liquids based on amino acids and its application as heterogeneous catalysts for Knoevenagel condensation reactions. Mol. Catal. 450, 112 (2018)

    Article  Google Scholar 

  21. N. Hussain, P. Gogoi, P. Khare, M.R. Das, Nickel nanoparticles supported on reduced graphene oxide sheets: a phosphine free, magnetically recoverable and cost-effective catalyst for Sonogashira cross-coupling reactions. RSC Adv. 5(125), 103105–103115 (2015)

    Article  CAS  Google Scholar 

  22. Z.V. Ignatovich, A.L. Ermolinskaya, Y.M. Katok, E.V. Korolev, A.N. Eremin, V.E. Agabekov, Catalytic activity of nickel nanoparticles in the reaction of reduction of nitroarenes. Russ. J. Gen. Chem. 88(3), 410–417 (2018)

    Article  CAS  Google Scholar 

  23. A. Ilangovan, S. Malayappasamy, S. Muralidharan, S. Maruthamuthu, A highly efficient green synthesis of 1,8-dioxo-octahydroxanthenes. Chem. Cent. J. 5(81), 1–6 (2011)

    Google Scholar 

  24. S. Jain, P.K. Paliwal, G.N. Babu, A. Bhatewara, DABCO promoted one-pot synthesis of dihydropyrano(c)chromene and pyrano[2,3-d]pyrimidine derivatives and their biological activities. J Saudi Chem Soc 18(5), 535–540 (2011). https://doi.org/10.1016/j.jscs.2011.10.023

    Article  CAS  Google Scholar 

  25. J. Jeevanandan, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 3(9), 1050–1074 (2018)

    Article  Google Scholar 

  26. B. Kaboudin, H. Khanmohammadi, F. Kazemi, Polymer supported gold nanoparticles: Synthesis and characterization of functionalized polystyrene-supported gold nanoparticles and their application in catalytic oxidation of alcohols in water. Appl. Surface Sci. 425, 400 (2017)

    Article  CAS  Google Scholar 

  27. V. Kalarivalappil, C.M. Divya, W. Wunderlich, S.C. Pillai, M. Nageri, V. Kumar, B.K. Vijayan, Pd Loaded TiO2 Nanotubes for the Effective Catalytic Reduction of p-Nitrophenol. Catal. Lett. 146, 474 (2016)

    Article  CAS  Google Scholar 

  28. H.N. Karade, M. Sake, M.P. Kaushik, An efficient synthesis of 1,8-dioxo-octahydroxanthenes using tetrabutylammonium hydrogen sulphate. Arkivoc 13, 252–258 (2007)

    Google Scholar 

  29. S. Kokkirala, N.M. Sabbavarapu, V.D.N. Yadavalli, β-cyclodextrin mediated synthesis of 1,8-dioxooctahydroxanthenes in water. Eur. J. Chem. 2(2), 272–275 (2011)

    Article  CAS  Google Scholar 

  30. G. Kour, M. Gupta, A nano silver-xerogel (Ag nps @ modified TEOS) as a newly developed nanocatalyst in the synthesis of benzopyranopyrimidines (with secondary and primary amines) and gem-bisamides. Dalton Trans. 46(21), 7039–7050 (2017)

    Article  CAS  Google Scholar 

  31. M. Kour, S. Paul, Sulfonated carbon/nano-metal oxide composites: a novel and recyclable solid acid catalyst for organic synthesis in benign reaction media. New J. Chem. 39(8), 6338–6350 (2015)

    Article  CAS  Google Scholar 

  32. I.S. Kustiningsih, W.W. Purwanto, Int. J. Technol. 5, 133 (2014)

    Article  Google Scholar 

  33. M.W. Lee, M.A.S.M. Haniff, A.S. Teh, D.C.S. Bien, S.K. Chen, J. Exp. Nanosci. 10, 1232 (2015)

    Article  CAS  Google Scholar 

  34. Y. Li, G.A. Somorjai, Nanoscale advances in catalysis and energy applications. Nano Lett. 10(7), 2289–2295 (2010)

    Article  CAS  Google Scholar 

  35. Y.D. Lim, A.V. Avramchuk, D. Grapov, C.W. Tan, B.K. Tay, S. Aditya, V. Labunov, Enhanced carbon nanotubes growth using nickel/ferrocene-hybridized catalyst. ACS Omega 2(9), 6063–6071 (2017)

    Article  CAS  Google Scholar 

  36. H.-Y. Lu, J.-J. Li, Z.-H. Zhang, ZrOCl2·8H2O: a highly efficient catalyst for the synthesis of 1,8-dioxo-octahydroxanthene derivatives under solvent-free conditions. Appl. Organometal. Chem. 23(4), 165–170 (2009)

    Article  CAS  Google Scholar 

  37. S.N. Maddila, S. Maddila, W.E. van Zyl, S.B. Jonnalagadda, Mn doped ZrO2 as a green, efficient and reusable heterogeneous catalyst for the multicomponent synthesis of pyrano[2,3-d]-pyrimidine derivatives. RSC Adv. 5(47), 37360–37366 (2015)

    Article  CAS  Google Scholar 

  38. M.T. Maghsoodlou, S.M. Habibi-Khorassani, Z. Shahkarami, N. Maleki, M. Rostamizadeh, An efficient synthesis of 2,2`-arylmethylene bis(3-hydroxy-5,5`-dimethyl-2-cyclohexene-1-one) and 1,8-dioxooctahydroxanthenes using ZnO and ZnO-acetyl chloride. Chin. Chem. Lett. 21(6), 686–689 (2010)

    Article  CAS  Google Scholar 

  39. N. Maleki, Z. Shakarami, S. Jamshidian, M. Nazari, Clean synthesis of pyrano[2,3-d]pyrimidines using ZnO nano-powders. Acta Chemica Iasi 24(1), 20–28 (2016)

    Article  Google Scholar 

  40. S. Maripi, R.B. Korupolu, S.B. Madasu, Nanonickel-cobalt ferrite catalysed one-pot multi-component synthesis of xanthenediones and acridinediones. Green and sustainable chemistry 7, 70–84 (2017)

    Article  CAS  Google Scholar 

  41. S. Mobasser, A.A. Firoozi, Review of nanotechnology applications in science and engineering. J. Civil Eng. Urban. 6(4), 84–93 (2016)

    Google Scholar 

  42. K.N. Mohana, B.N.P. Kumar, L. Mallesha, Synthesis and biological activity of some pyrimidine derivatives. Drug Invent Today 5, 216–222 (2013)

    Article  CAS  Google Scholar 

  43. N. Mulakayala, G.P. Kumar, D. Rambabu, M. Aeluri, M.V.B. Rao, M. Pal, A greener synthesis of 1,8-dioxo-octahydroxanthene derivatives under ultrasound. Tetrahedron Lett. 53(51), 6923–6926 (2012)

    Article  CAS  Google Scholar 

  44. V. Padmavati, B.C. Venkatesh, A. Muralikrishna, A. Padmaja, Synthesis and antioxidant activity of a new class of bis and tris heterocycles. Arch. Pharm. Chem. Life Sci. 345, 745–752 (2012)

    Article  Google Scholar 

  45. M.G. Prakash, R. Mahalakshmy, K.R. Krishnamurthy, B. Viswanatahan, Selective hydrogenation of cinnamaldehyde on nickel nanoparticles supported on titania: role of catalyst preparation methods. Catal. Sci. Technol. 5(6), 3313–3321 (2015)

    Article  CAS  Google Scholar 

  46. M. Rawat, D.S. Rawat, Copper oxide nanoparticle catalysed synthesis of imidazo[1,2-a]pyrimidine derivatives, their optical properties and selective fluorescent sensor towards zinc ion. Tetrahedron Lett. 59(24), 2341–2346 (2018)

    Article  CAS  Google Scholar 

  47. S. Samantaray, P. Kar, G. Hota, B.G. Mishra, Sulfate grafted iron stabilized zirconia nanoparticles as efficient heterogeneous catalyst for solvent-free synthesis of xanthenediones under microwave irradiation. Ind. Eng. Chem. Res. 52(17), 5862–5870 (2013)

    Article  CAS  Google Scholar 

  48. A.H. Shamroukh, M.E. Zaki, E.M. Morsy, F.M. Abdal-Motti, F.M. Abdal-Megeid, Synthesis of pyrazolo(4,3:5,6]pyrano[2,3-d]pyrimidine derivatives for antiviral evaluation. Arch. Pharm. (Weinheim) 340(5), 236–243 (2007)

    Article  CAS  Google Scholar 

  49. R.K. Sharma, M. Yadav, R. Gaur, Y. Monga, A. Adholeya, Magnetically retrievable silica-based nickel nanocatalyst for Suzuki-Miyaura cross-coupling reaction. Catal. Sci. Technol. 5(5), 2728–2740 (2015)

    Article  CAS  Google Scholar 

  50. S.B. Singh, P.K. Tandon, Catalysis: a brief review on nano-catalyst. J. Energy Chem. Eng. 2, 106–115 (2014)

    Google Scholar 

  51. A. Tadjarodi, A. Azad, M.G. Dekamin, S. Afshar, R. Hejazi, A. Molahosseini, Sulfated Titania Nanoparticles: an Efficient Catalyst for the Synthesis of Polyhydroquinoline Derivatives through Hantzsch Multicomponent Reaction. J. Nanostruct. 5, 327 (2015)

    Google Scholar 

  52. A. Thakur, A. Sharma, A. Sharma, Efficient synthesis of xanthenedione derivatives using cesium salt of phosphotungstic acid as a heterogeneous and reusable catalyst in water. Synth. Commun. 46(21), 1766–1771 (2016)

    Article  CAS  Google Scholar 

  53. J.C. Yu, H.C. Wang, Green synthesis of pyrano[2,3-d]pyrimidine derivatives in ionic liquids. Synth. Commun. 35(24), 3133–3140 (2005)

    Article  CAS  Google Scholar 

  54. S. Yu, X. Peng, G. Cao, M. Zhou, L. Qiao, J. Yao, H. He, Ni nanoparticles decorated titania nanotube array as efficient nonenzymatic glucose sensor. Electrochim. Acta 76, 512–517 (2012)

    Article  CAS  Google Scholar 

  55. Y. Zhu, Z. Wang, J. Zhang, J. Yu, L. Yan, Y. Li, L. Chen, X. Yan, An organocatalytic synthesis of chiral pyrano[2,3-d]pyrimidines through[3 + 3] annulation of 1,3-dimethyl-barbituric acid with 2-(1-alkynyl)-2-alken-1-ones. Eur. J. Org. Chem. 3, 347–354 (2010)

    Google Scholar 

  56. S. Behrouz, H.P. Mohammah, H. Mahdi, Al-HMS-20 catalyzed synthesis of pyrano [2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines via three-component reaction. Res. Chem. Intermed. 41, 1343–1350 (2015). https://doi.org/10.1007/s11164-013-1277-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to IIT Mandi for conducting SEM–EDX and FTIR, to IIT, Bombay, for HR-TEM, and to IIT, Kanpur, for providing XPS analysis. We thank Department of Chemistry, University of Jammu, for providing the facilities of TGA and 1H NMR studies. We are also thankful to IIIM, Jammu, for conducting 13C NMR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Gupta.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajinder, Y., Gupta, M. & Kour, J. Nickel NPs @N-doped titania: an efficient and recyclable heterogeneous nanocatalytic system for one-pot synthesis of pyrano[2,3-d]pyrimidines and 1,8-dioxo-octahydroxanthenes. J IRAN CHEM SOC 16, 1977–1992 (2019). https://doi.org/10.1007/s13738-019-01669-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01669-4

Keywords

Navigation