Skip to main content

Advertisement

Log in

Steam Reforming of Methane Over Catalyst Derived from Ordered Double Perovskite: Effect of Crystalline Phase Transformation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

La2NiTiO6 double perovskite was synthesized by modified Pechini method. The catalyst activity for steam reforming of methane was investigated at temperatures from 450 to 950 °C, under different reduction conditions. By reducing La2NiTiO6 with 10 % H2/N2 at 1,000 °C, the crystalline phase changed to mainly Ni0 and La2TiO5, which decreases the onset temperature of methane conversion to 550 °C and provides a maximum methane conversion of 95 % at 950 °C. This activity is higher when compared to that achieved with La2NiTiO6 reduced with 1.8 % H2/Ar, which is composed of Ni0 supported on both non-stoichiometric La2NiTiO6 and La2O3, and also to those of unreduced La2NiTiO6 and Ni/La2O3 formed by reduction of LaNiO3. Activity improvement is related to the increased number of active sites and/or metal-support interaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. U.S. Energy Information Administration. International Energy Outlook 2013. http://www.eia.gov/forecasts/ieo/pdf/0484(2013).pdf (accessed May 25, 2015)

  2. U.S. Energy Information Administration. International Energy Outlook 2014. http://www.eia.gov/forecasts/ieo/pdf/0484(2014).pdf (accessed May 25, 2015)

  3. Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen JR, Chorkendorff I, Sehested J, Nørskov JK (2008) J Catal 259:147

    Article  CAS  Google Scholar 

  4. Wei J, Iglesia E (2004) J Catal 224:370

    Article  CAS  Google Scholar 

  5. Mei D, Glezakou V-A, Lebarbier V, Kovarik L, Wan H, Albrecht KO, Gerber M, Rousseau R, Dagle RA (2014) J Catal 316:11

    Article  CAS  Google Scholar 

  6. Liu D, Wang Y, Shi D, Jia X, Wang X, Borgna A, Lau R, Yang Y (2012) Int J Hydrogen Energy 37:10135

    Article  CAS  Google Scholar 

  7. Parizotto NV, Rocha KO, Damyanova S, Passos FB, Zanchet D, Marques CMP, Bueno JMC (2007) Appl Catal A 330:12

    Article  CAS  Google Scholar 

  8. Nieva MA, Villaverde MM, Monzón A, Garetto TF, Marchi AJ (2014) Chem Eng J 235:158

    Article  CAS  Google Scholar 

  9. Liu YP, Chen SH, Fuh HR, Wang YK (2013) Commun Comput Phys 14:174

    Google Scholar 

  10. Anderson MT, Greenwood KB, Taylor GA, Poeppelmeier KR (1993) Prog Solid State Chem 22:197

    Article  CAS  Google Scholar 

  11. Campbell K (1992) Catal Today 13:245

    Article  CAS  Google Scholar 

  12. Yin X, Hong L (2009) Appl Catal A 371:153

    Article  CAS  Google Scholar 

  13. Li C, Wang W, Xu C, Liu Y, He B, Chen C (2011) J Nat Gas Chem 20:345

    Article  CAS  Google Scholar 

  14. Iwakura H, Einaga H, Teraoka Y (2011) J Novel Carbon Resource Sci 3:1

    Google Scholar 

  15. Huang Y-H, Liang G, Croft M, Lehtimäki M, Karppinen M, Goodenough JB (2009) Chem Mater 21:2319

    Article  CAS  Google Scholar 

  16. Takehira K, Shishido T, Kondo M (2002) J Catal 207:307

    Article  CAS  Google Scholar 

  17. Vijatović MM, Bobić JD, Stojanović BD (2008) Sci Sintering 40:155

    Article  Google Scholar 

  18. Rodríguez-Carvajal J (1993) Phys B 192:55

    Article  Google Scholar 

  19. Rodríguez E, López ML, Campo J, Veiga ML, Pico C (2002) J Mater Chem 12:2798

    Article  Google Scholar 

  20. Yang M, Huo L, Zhao H, Gao S, Rong Z (2009) Sens Actuators, B 143:111

    Article  Google Scholar 

  21. Arrivé C, Delahaye T, Joubert O, Gauthier G (2013) J Power Sources 223:341

    Article  Google Scholar 

  22. Maneerung T, Hidajat K, Kawi S (2011) Catal Today 171:24

    Article  CAS  Google Scholar 

  23. Provendier H, Petit C, Kiennemann A (2001) C R Acad Sci Ser IIc Chim 4:57

    CAS  Google Scholar 

  24. Kundakovic L, Flytzani-Stephanopoulos M (1998) Appl Catal A 171:13

    Article  CAS  Google Scholar 

  25. Park BH, Choi GM (2014) Solid State Ionics 262:345

    Article  CAS  Google Scholar 

  26. Pereñíguez R, González-DelaCruz VM, Holgado JP, Caballero A (2010) Appl Catal B: Environ 93:346

    Article  Google Scholar 

  27. Seo Y-S, Shirley A, Kolaczkowski ST (2002) J Power Sources 108:213

    Article  CAS  Google Scholar 

  28. Kapokova L, Pavlova S, Bunina R, Alikina G, Krieger T, Ishchenko A, Rogov V, Sadykov V (2011) Catal Today 164:227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Carlos André de Castro Perez from NUCAT/PEQ/COPPE/UFRJ for Rietveld analysis and Pablo V. Tuza acknowledges to Secretaría de Educación Superior, Ciencia, Tecnologia e Innovación SENESCYT-Ecuador for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana M. V. M. Souza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuza, P.V., Souza, M.M.V.M. Steam Reforming of Methane Over Catalyst Derived from Ordered Double Perovskite: Effect of Crystalline Phase Transformation. Catal Lett 146, 47–53 (2016). https://doi.org/10.1007/s10562-015-1617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1617-1

Keywords

Navigation