Skip to main content
Log in

Effect of Nickel Diameter on the Rates of Elementary Steps Involved in CO2 Reforming of CH4 Over Ni/Al2O3 Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of Ni diameter on the rates of individual steps involved in CH4–CO2 reforming was examined on Ni/Al2O3 catalysts in the diameter range of ca. 4–22 nm. It was revealed that CO2 dissociation to give CO and Oads was improved by decreasing the diameter. This may result in increasing the number of adsorbed oxygen species per active site of catalyst, which may consequently enhance the oxidation of CHx,ads to CHxOads. Furthermore subsequent rate-determining step, CHxOads → CO + x/2H2, was also promoted by decreasing the diameter. The enhancement of these elementary steps was considered a cause for the increase of turnover frequency with decreasing nickel diameter. Gasification of deposited carbons by CO2, i.e., the reverse Boudouard reaction, was also improved by decreasing the size of nickel. Although suppression of coking on fine nickel may primarily be due to the retardation of graphite nucleation, improvement of the reverse Boudouard reaction may also contribute to the carbon-free reforming to a certain degree.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rostrup-Nielsen JR, Hansen JB, Aparicio LM (1997) Sekiyu Gakkaishi-J Jpn Petrol Inst 40:366

    Article  CAS  Google Scholar 

  2. Dibbern HC, Olesen P, Rostrup-Nielsen JR, Tottrup PB, Udengaard NR (1986) Hydrocarb Process 65:71

    CAS  Google Scholar 

  3. Rostrup-Nielsen JR (1973) J Catal 31:173

    Article  CAS  Google Scholar 

  4. Rostrup-Nielsen JR (1974) J Catal 33:184

    Article  Google Scholar 

  5. Rostrup-Nielsen JR (1984) J Catal 85:31

    Article  CAS  Google Scholar 

  6. Horiuchi T, Sakuma K, Fukui T, Kubo Y, Osaki T, Mori T (1996) Appl Catal A 144:111

    Article  CAS  Google Scholar 

  7. Rostrup-Nielsen JR (1984) In: Andersen JR, Boudart M (eds) Catalysis, science and technology, vol 5. Springer, Berlin ch. 1

    Google Scholar 

  8. Gadalla AM, Sommer MEJ (1989) J Am Ceram Soc 72:683

    Article  CAS  Google Scholar 

  9. Chen YG, Ren J (1994) Catal Lett 29:39

    Article  CAS  Google Scholar 

  10. Bhattacharyya A, Chang VW (1994) Stud Surf Sci Catal 88:207

    Article  CAS  Google Scholar 

  11. Osaki T, Horiuchi T, Sugiyama T, Suzuki K, Mori T (1998) Catal Lett 52:171

    Article  CAS  Google Scholar 

  12. Osaki T, Mori T (2009) J Non-Cryst Solids 355:1590

    Article  CAS  Google Scholar 

  13. Wang YH, Liu HM, Xu BQ (2009) J Mol Catal A-Chem 299:44

    Article  CAS  Google Scholar 

  14. Tomishige K, Chen YG, Fujimoto K (1999) J Catal 181:91

    Article  CAS  Google Scholar 

  15. Hu YH, Ruckenstein R (2002) Catal Rev-Sci Eng 44:423

    Article  CAS  Google Scholar 

  16. Xie X, Otremba T, Littlewood P, Schomacker R, Thomas A (2013) ACS Catal 3:224

    Article  CAS  Google Scholar 

  17. Tao K, Ohta N, Liu GQ, Yoneyama Y, Wang T, Tsubaki N (2013) Fuel 104:53

    Article  CAS  Google Scholar 

  18. Jeong DW, Jang WJ, Shim JO, Roh HS, Son IH, Lee SJ (2013) Int J Hydrogen Energy 38:13649

    Article  CAS  Google Scholar 

  19. Fouskas A, Kollia M, Kambolis A, Papadopoulou C, Matralis H (2014) Appl Catal A-Gen 474:125

    Article  CAS  Google Scholar 

  20. Li B, Qian X, Wang X (2015) Int J Hydrogen Energy 40:8081

    Article  CAS  Google Scholar 

  21. Thomas JM, Thomas WJ (1997) Principles and practice of heterogeneous catalysis. VCH, Berlin

    Google Scholar 

  22. Bengaard HS, Norskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) J Catal 209:365

    Article  CAS  Google Scholar 

  23. Rostrup-Nielsen JR, Sehested J, Norskov JK (2002) Adv Catal 47:65

    CAS  Google Scholar 

  24. Osaki T, Mori T (2001) J Catal 204:89

    Article  CAS  Google Scholar 

  25. Osaki T, Masuda H, Mori T (1994) Catal Lett 29:33

    Article  CAS  Google Scholar 

  26. Osaki T, Horiuchi T, Suzuki K, Mori T (1996) J Chem Soc, Faraday Trans 92:1627

    Article  CAS  Google Scholar 

  27. Osaki T (1997) J Chem Soc, Faraday Trans 93:643

    Article  CAS  Google Scholar 

  28. Osaki T, Horiuchi T, Suzuki K, Mori T (1997) Catal Lett 44:19

    Article  CAS  Google Scholar 

  29. Osaki T, Fukaya H, Horiuchi T, Suzuki K, Mori T (1998) J Catal 180:106

    Article  CAS  Google Scholar 

  30. Bradford MCJ, Vannice MA (1999) Catal Rev-Sci Eng 41:1

    Article  CAS  Google Scholar 

  31. Anderson JR (1975) Structure of metallic catalysts. Academic Press, London

    Google Scholar 

  32. The Catalyst Society of Japan (1986) Shokubai Koza, vol 3. Kodansha, Tokyo

    Google Scholar 

  33. Kim JH, Suh DJ, Park TJ, Kim KL (2000) Appl Catal A-Gen 197:191

    Article  CAS  Google Scholar 

  34. Mizushima T (1993) In: Ueno T, Mizukami F, Sodesawa T (eds) Preparation of catalysts from metal alkoxides. IPC, Tokyo ch. 1

    Google Scholar 

  35. Zhang J, Wang H, Dalai AK (2008) Appl Catal A-Gen 339:121

    Article  CAS  Google Scholar 

  36. Tang S, Ji L, Lin J, Zeng HC, Tan KL, Li K (2000) J Catal 194:424

    Article  CAS  Google Scholar 

  37. Solymosi F (1991) J Mol Catal 65:337

    Article  CAS  Google Scholar 

  38. Segner J, Campbell CT, Doyen G, Ertl G (1984) Surf Sci 138:505

    Article  CAS  Google Scholar 

  39. Bradford MCJ, Vannice MA (1996) Appl Catal A-Gen 142:97

    Article  CAS  Google Scholar 

  40. Wei JM, Iglesia E (2004) J Catal 224:370

    Article  CAS  Google Scholar 

  41. Osaki T, Mori T (2006) React Kinet Catal Lett 89:333

    Article  CAS  Google Scholar 

  42. Kroll VCH, Swaan HM, Lacombe S, Mirodatos C (1996) J Catal 164:387

    Article  CAS  Google Scholar 

  43. Mirodatos C (1998) Stud Surf Sci Catal 119:99

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Osaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osaki, T. Effect of Nickel Diameter on the Rates of Elementary Steps Involved in CO2 Reforming of CH4 Over Ni/Al2O3 Catalysts. Catal Lett 145, 1931–1940 (2015). https://doi.org/10.1007/s10562-015-1608-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1608-2

Keywords

Navigation