Skip to main content
Log in

Enhancing the Catalytic Activity of Hollandite Manganese Oxide by Supporting Sub-10 nm Ceria Particles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Sub-10 nm CeO2 particles were highly dispersed on Hollandite-type manganese oxide (HMO) to give a CeOx/HMO catalyst, which showed obviously higher activity than HMO and CeO2 alone in CO oxidation and selective catalytic reduction of NO by NH3. A combination of various characterization data with the catalytic tests revealed that the enhanced catalytic activity results from the strong interaction between CeO2 and HMO to activate the transfer of electron, the improved redox ability of surface oxygen due to an increased electron density, and the presence of more surface active oxygen species.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brock SL, Duan NG, Tian ZR, Giraldo O, Zhou H, Suib SL (1998) Chem Mater 10:2619–2628

    Article  CAS  Google Scholar 

  2. Luo J, Zhang Q, Garcia-Martinez J, Suib SL (2008) J Am Chem Soc 130:3198–3207

    Article  CAS  Google Scholar 

  3. Li LY, King DL (2005) Chem Mater 17:4335–4343

    Article  CAS  Google Scholar 

  4. Hu RR, Yan CF, Xie LY, Cheng Y, Wang DZ (2011) Int J Hydrog Energy 36:64–71

    Article  Google Scholar 

  5. Özacar M, Poyraz AS, Genuino HC, Kao CH, Meng YT, Suib SL (2013) Appl Catal A 462–463:64–74

    Article  Google Scholar 

  6. Liu XS, Jin ZN, Lu JQ, Wang XX, Luo MF (2010) Chem Eng J 162:151–157

    Article  CAS  Google Scholar 

  7. Wang C, Sun L, Cao QQ, Hu BQ, Huang ZW, Tang XF (2011) Appl Catal B 101:598–605

    Article  CAS  Google Scholar 

  8. Wang ZM, Tezuka S, Kanoh H (2001) Catal Today 68:111–118

    Article  CAS  Google Scholar 

  9. Simonsena SB, Dahla S, Johnsonb E, Helvega S (2008) J Catal 255:1–5

    Article  Google Scholar 

  10. Carrettin S, Concepción P, Corma A, Neito JML, Puntes VF (2004) Angew Chem Int Ed 43:2538–2540

    Article  CAS  Google Scholar 

  11. Luo MF, Ma JM, Lu JQ, Song YP, Wang YJ (2007) J Catal 246:52–57

    Article  CAS  Google Scholar 

  12. Bera P, Aruna ST, Patil KC, Hegde MS (1999) J Catal 186:36–44

    Article  CAS  Google Scholar 

  13. Campbell CT, Peden CHF (2005) Science 309:713–714

    Article  CAS  Google Scholar 

  14. Jacobs G, Williams L, Graham U, Sparks D, Davis BH (2003) J Phys Chem B 107:10398–10404

    Article  CAS  Google Scholar 

  15. Sui R, Flytzani-Stephanopoulos M (2008) Angew Chem Int Ed 120:2926–2929

    Article  Google Scholar 

  16. Machida M, Murata Y, Kishikawa K, Zhang DJ, Lkeue K (2008) Chem Mater 20:4489–4494

    Article  CAS  Google Scholar 

  17. Imamura S, Shono M, Okamoto N, Hamada A, Ishida S (1996) Appl Catal A 142:279–288

    Article  CAS  Google Scholar 

  18. Eigenmann F, Maciejewski M, Baiker A (2006) Appl Catal B 62:311–318

    Article  CAS  Google Scholar 

  19. Trovarelli A (1996) Catal Rev Sci Eng 38:439–520

    Article  CAS  Google Scholar 

  20. Xu WQ, Yu YB, Zhang CB, He H (2008) Catal Commun 9:1453–1457

    Article  CAS  Google Scholar 

  21. Qian K, Lv SS, Xiao XY, Sun HX, Lu JQ, Luo MF, Huang WX (2009) J Mol Catal A 306:40–47

    Article  CAS  Google Scholar 

  22. Huang ZW, Gu X, Cao QQ, Hu PP, Hao JM, Li JH, Tang XF (2012) Angew Chem Int Ed 124:4274–4279

    Article  Google Scholar 

  23. Qin HM, Qian XS, Meng T, Lin Y, Ma Z (2015) Catalysts 5:606–633

    Article  CAS  Google Scholar 

  24. Qian XS, Qin HM, Meng T, Lin Y, Ma Z (2014) Materials 7:8105–8130

    Article  Google Scholar 

  25. Hu PP, Huang ZW, Hua WM, Gu X, Tang XF (2012) Appl Catal A 437–438:139–148

    Google Scholar 

  26. Andrada SA, Sayle DC, Watson GW (2001) J Phys Chem B 105:12481–12489

    Article  Google Scholar 

  27. Romeo M, Bak K, Fallah JE, Normand FL, Hilaire L (1993) Surf Interface Anal 20:508–512

    Article  CAS  Google Scholar 

  28. Galakhov VR, Demeter M, Bartkowski S, Neumann M, Ovechkina NA, Kurmaev EZ, Lobachevskaya YM, Mitchell J, Ederer DL (2002) Phys Rev B 65:113102

    Article  Google Scholar 

  29. Larachi F, Pierre J, Adnot A, Bernis A (2002) Appl Surf Sci 195:236

    Article  CAS  Google Scholar 

  30. Qi G, Yang RT, Zhang R (2004) Appl Catal B 51:93–106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the NSFC (21277032, 21477023, 21177028), the STCSM (14JC1400400), and the SCAPC (201306). Y. Wang wishes to thank the UROP program of Fudan University and CURE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Ma or Xingfu Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, H., Hu, P. et al. Enhancing the Catalytic Activity of Hollandite Manganese Oxide by Supporting Sub-10 nm Ceria Particles. Catal Lett 145, 1880–1884 (2015). https://doi.org/10.1007/s10562-015-1594-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1594-4

Keywords

Navigation