Skip to main content

Advertisement

Log in

Catalyst Promoted Synthesis, Computational and Enzyme Inhibition Studies of Coumarin Esters

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In the present study, a new series of ester analogues of substituted coumarin-3-carboxylic acids were synthesized which were typically accessed via a facile esterification reaction between propargyl alcohol and appropriately substituted coumarin-3-carboxylic acids (15). This new environmentally benign solid acid catalyst catalyzed, synthetic eco-friendly approach resulted in a noteworthy progress in synthetic efficiency (89–94 % yield), high purity, operational simplicity, mild reaction conditions, cleaner reaction profiles, recyclability of the catalyst and minimizing the production of chemical wastes without using highly toxic reagents for the synthesis. The molecular structure of compound 6 was authenticated by single crystal X-ray crystallographic analysis. The structure and morphology of the catalyst has been established on the basis of FT-IR, scanning electron microscopy–energy dispersion X-ray spectrometry and transmission electron microscopy. The promising bioactive score against enzymatic inhibition prompted us to carry out acetylcholinesterase inhibition screening of the synthesized compounds (610). A computer-aided molecular docking study was carried out to validate the specific binding mode of the newly synthesized compounds into the active site of receptor to bear out the specific binding modes of the compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Scheme 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ajani OO, Nwinyi OC (2010) J Heterocycl Chem 47:179

    CAS  Google Scholar 

  2. Weber US, Steffen B, Siegers CP (1998) Res Commun Mol Pathol Pharmacol 99:193

    CAS  Google Scholar 

  3. Patil AD, Freyer AJ, Drake SE, Haltiwanger RC, Bean MF, Taylor PB, Caranfa MJ, Breen AL, Bartus HR, Johnson RK, Hertzberg RP, Westley JW (1993) J Med Chem 36:4131

    Article  CAS  Google Scholar 

  4. Yun BS, Lee IK, Ryoo IJ, Yoo ID (2001) J Nat Prod 64:1238

    Article  CAS  Google Scholar 

  5. Cheng JF, Ishikawa A, Ono Y, Arrhenius T, Nadzan A (2003) Bioorg Med Chem Lett 13:3647

    Article  CAS  Google Scholar 

  6. Zaha AA, Hazem A (2002) Microbiologica 25:213

    CAS  Google Scholar 

  7. Backhouse CN, Delporte CL, Negrete RE, Erazo S, Zuniga A, Pinto A, Cassels BK (2001) J Ethnopharmacol 78:27

    Article  CAS  Google Scholar 

  8. Tada Y, Shikishima Y, Takaishi Y, Shibata H, Higuti T, Honda G, Ito M, Takeda Y, Kodzhimatov OK, Ashurmetov O, Ohmoto Y (2002) Phytochemistry 59:649

    Article  CAS  Google Scholar 

  9. Stein AC, Alvarez S, Avancini C, Zacchino S, Poser GV (2006) J Ethnopharmacol 107:95

    Article  CAS  Google Scholar 

  10. Whittaker M, Floyd CD, Brown P, Gearing AJH (1999) Chem Rev 99:2735

    Article  CAS  Google Scholar 

  11. Maly DJ, Leonetti F, Backes BJ, Dauber DS, Harris JL, Craik CS, Ellman JA (2002) J Org Chem 67:910

    Article  CAS  Google Scholar 

  12. Changwong N, Sabphon C, Ingkaninan K, Sawasdee P (2012) Phytother Res 26:392

    CAS  Google Scholar 

  13. Piazzi L, Cavalli A, Colizzi F, Belluti F, Bartolini M, Mancini F, Recanatini M, Andrisano V, Rampa A (2008) Bioorg Med Chem Lett 18:423

    Article  CAS  Google Scholar 

  14. Garino C, Pietrancosta N, Laras Y, Moret V, Rolland A, Quéléver G, Kraus JL (2006) Bioorg Med Chem Lett 16:1995

    Article  CAS  Google Scholar 

  15. Ortega DDS, Murphy BP, Velasquez FJG, Wilson KA, Xie F, Wang Q, Moss MA (2011) Bioorg Med Chem 19:2596

    Article  Google Scholar 

  16. Radić Z, Reiner E, Simeon V (1984) Biochem Pharmacol 33:671

    Article  Google Scholar 

  17. Radić Z, Reiner E, Taylor P (1991) Mol Pharmacol 39:98

    Google Scholar 

  18. Rudolf VS, Kovarik Z, Radić Z, Reiner E (1999) Chem Biol Interact 119–120:119

    Article  Google Scholar 

  19. Pechmann VH, Duisberg C (1884) Chem Ber 17:929

    Article  Google Scholar 

  20. Perkin WH, Henry WS (1875) J Chem Soc 28:10

    Article  Google Scholar 

  21. Brufola G, Fringuelli F, Piermatti O, Pizzo F (1996) Heterocycles 43:1257

    Article  CAS  Google Scholar 

  22. Cairns N, Harwood LM, Astles DP (1994) J Chem Soc Perkin Trans 1:3101

    Article  Google Scholar 

  23. Shriner RL (1942) The Reformatsky reaction. Wiley, London, p 1:15

  24. Yavari I, Shoar RH, Zonouzi A (1998) Tetrahedron Lett 39:2391

    Article  CAS  Google Scholar 

  25. Al-Zaydi KM (2003) Molecules 8:541

    Article  CAS  Google Scholar 

  26. Ghosh PP, Das AR (2012) Tetrahedron Lett 53:3140

    Article  CAS  Google Scholar 

  27. Khoobi M, Ramazani A, Foroumadi AR, Hamadi H, Hojjati Z, Shafiee A (2011) J Iran Chem Soc 8:1036

    Article  CAS  Google Scholar 

  28. Khurana JM, Kumar S (2009) Tetrahedron Lett 50:4125

    Article  CAS  Google Scholar 

  29. Rao P, Konda S, Iqbal J, Oruganti S (2012) Tetrahedron Lett 53:5314

    Article  CAS  Google Scholar 

  30. Khan AT, Das DK, Islam K, Das P (2012) Tetrahedron Lett 53:6418

    Article  CAS  Google Scholar 

  31. Ray SK, Singh PK, Molleti N, Singh VK (2012) J Org Chem 77:8802

    Article  CAS  Google Scholar 

  32. Bagdi AK, Majee A, Hajra A (2013) Tetrahedron Lett 54:3892

    Article  CAS  Google Scholar 

  33. Salama TA, Ismail MA, Khalil AGM, Elmorsy SS (2012) ARKIVOC ix:242

    Google Scholar 

  34. Karami B, Khodabakhshi S, Eskandari K (2012) Tetrahedron Lett 53:1445

    Article  CAS  Google Scholar 

  35. Jung JC, Lee JH, Oh S, Lee JG, Park OS (2004) Bioorg Med Chem Lett 14:5527

    Article  CAS  Google Scholar 

  36. Zhang XS, Li ZW, Shi ZJ (2014) Org Chem Front 1:44

    Article  CAS  Google Scholar 

  37. Karimian R, Piri F, Safari AA, Davarpanah SJ (2013) J Nanostruct Chem 3:52

    Article  Google Scholar 

  38. Datta B, Pasha MA (2013) ISRN Org Chem 2013:1

    Article  Google Scholar 

  39. Chavan F, Madje B, Bharad J, Ubale M, Ware M, Shingare M, Shinde N (2008) Bull Catal Soc India 7:41

    Google Scholar 

  40. Gawande MB, Hosseinpour R, Luque R (2013) Curr Org Synth 11:526

    Article  Google Scholar 

  41. Heravi MM, Ajami D, Ghassemzadeh M (1999) Synth Commun 29:1013

    Article  CAS  Google Scholar 

  42. Oskooie HA, Heravi MM, Sadnia A, Jannati F, Behbahani FK (2008) Monatsh Chem 139:27

    Article  CAS  Google Scholar 

  43. Wu H, Shen Y, Fan LY, Wan Y, Zhang P, Chen CF, Wang WX (2007) Tetrahedron 63:2404

    Article  CAS  Google Scholar 

  44. Shaterian HR, Ghashang M, Feyzi M (2008) Appl Catal A Gen 345:128

    Article  CAS  Google Scholar 

  45. Baltork IM, Mirkhani V, Moghadam M, Tangestaninejad S, Zolfigol MA, Alibeik MA, Khosropour AR, Kargar H, Hojati SF (2008) Catal Commun 9:894

    Article  Google Scholar 

  46. Zolfigol MA, Veisi H, Mohanazadeh F, Sedrpoushan A (2011) J Heterocycl Chem 48:977

    Article  CAS  Google Scholar 

  47. Veisi H (2010) Tetrahedron Lett 51:2109

    Article  CAS  Google Scholar 

  48. Shirini F, Zolfigol MA, Salehi P (2006) Curr Org Chem 10:2171

    Article  Google Scholar 

  49. Zolfigol MA (2001) Tetrahedron 57:9509

    Article  CAS  Google Scholar 

  50. Gawande MB, Brancoa PS, Varma RS (2013) Chem Soc Rev 42:3371

    Article  CAS  Google Scholar 

  51. Gawande MB, Rathi AK, Nogueira ID, Varma RS, Branco PS (2013) Green Chem 15:1895

    Article  CAS  Google Scholar 

  52. Bandgar BP, Gawande SS, Muley DB (2010) Green Chem Lett Rev 3:49

    Article  CAS  Google Scholar 

  53. Breton GW (1997) J Org Chem 62:8952

    Article  CAS  Google Scholar 

  54. Gupta R, Gupta M, Paul S, Gupta R (2009) Bull Korean Chem Soc 30:2419

    Article  CAS  Google Scholar 

  55. Hasaninejad A, Zare AK, Sharghi H, Niknam K, Shekouhy M (2007) ARKIVOC xiv:39

    Google Scholar 

  56. Aoyama T, Suzuki T, Nagaoka T, Takido T, Kodomari M (2013) Synth Commun 43:553

    Article  CAS  Google Scholar 

  57. Pramitha P, Bahulayan D (2012) Bioorg Med Chem Lett 22:2598

    Article  CAS  Google Scholar 

  58. International tables for X-ray crystallography, vol III. Kynoch Press, Birmingham, England (1952)

  59. SAINT, Version 6.02, Bruker AXS, Madison, WI (1999)

  60. XPREP, Version 5.1, Siemens Industrial Automation Inc., Madison, WI (1995)

  61. Sheldrick GM (1997) SHELXL-97: program for crystal structure refinement. University of Göttingen, Göttingen

    Google Scholar 

  62. Ellman GL, Courtney KD, Andres VJ, Feather-Stone RM (1961) Biochem Pharmacol 7:88

    Article  CAS  Google Scholar 

  63. Ertl P, Rohde B, Selzer P (2000) J Med Chem 43:3714

    Article  CAS  Google Scholar 

  64. Thomsen R, Christensen MH (2006) J Med Chem 11:3315

    Article  Google Scholar 

  65. Schuttelkopf AW, Aalten DMFV (2004) Acta Cryst D60:1355

    Google Scholar 

  66. Mustard D, Ritchie DW (2005) Struct Funct Bioinform 60:269

    Article  CAS  Google Scholar 

  67. Discovery Studio v4.0 client Copyright @2005-12 Accelrys software Inc

  68. Hsu KC, Chen YF, Lin SR, Yang JM (2011) BMC Bioinform 12:1

    Google Scholar 

Download references

Acknowledgments

Authors thank the Chairman, Department of Chemistry, A.M.U, Aligarh, for providing necessary research facilities, University Sophisticated Instrument Facility (USIF), AMU, Aligarh for providing SEM–EDX facilities, SAIF Panjab University Chandigarh for TEM analysis and spectral studies, Division of Bioscience, Dongguk University, Gyeongju, South Korea is acknowledged for bioassay and X-ray analysis. UGC is also gratefully acknowledged for research fellowship to Faheem Ahmad and Ali Mohammed Malla.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehtab Parveen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4736 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveen, M., Ahmad, F., Malla, A.M. et al. Catalyst Promoted Synthesis, Computational and Enzyme Inhibition Studies of Coumarin Esters. Catal Lett 144, 2091–2106 (2014). https://doi.org/10.1007/s10562-014-1381-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1381-7

Keywords

Navigation