Skip to main content
Log in

Design, Synthesis and Characterization of Bimetallic Palladium Complexes for Terminal Olefin Epoxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of aromatic ring spaced binuclear Pd(II) complexes were synthesized from sterically tuned Schiff base ligands derived from 4,6-diacetylresorcinol and 2,6-dialkyl substituted anilines to provide a general and flexible set of complexes for terminal olefin epoxidation studies using “green” oxidant 30 % hydrogen peroxide as a terminal oxidant. All the compounds were fully characterized by analytical and spectrometric methods. Additionally, the ligands L1 and L2 were characterized by single crystal X-ray diffraction technique. The complexes C1 and C2 displayed high activity and substrate selectivity in the oxidation of 1-octene, whereas mixed products were observed in case of styrene with reasonable yields, arguably assignable to stringent steric and electronic factors of the complexes employed. Up to 98.5 % conversion is observed for epoxidation of 1-octene with high substrate selectivity, whereas up to 95 % conversion is observed for styrene with poor selectivity.

Graphical Abstract

A series of Pd(II) complexes were synthesized from sterically tuned Schiff base ligands derived from 4,6-diacetylresorcinol and 2,6-dialkyl substituted anilines to provide a flexible set of complexes for olefin epoxidation studies using hydrogen peroxide as a terminal oxidant. The complexes C1C3 showed substrate selectivity in the oxidation of 1-octene, where as mixed products were observed in case of styrene with reasonable yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Scheme 4
Fig. 5

Similar content being viewed by others

References

  1. Leeuwen PWNM (2004) Homogeneous catalysis. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  2. Weissermel K, Arpe HJ (1978) Industrial organic chemistry: important raw materials and intermediates. Verlag Chemie, Weinheim

    Google Scholar 

  3. Jacobsen EN, Zhang W, Muci AR, Ecker JR, Deng L (1991) J Am Chem Soc 113:7063

    Article  CAS  Google Scholar 

  4. Bagherzadeh M, Zare M (2012) J Coord Chem 65:4054

    Article  CAS  Google Scholar 

  5. Ishii Y, Yamawaki K, Ura T, Yamada H, Yoshida T, Ogawa M (1988) J Org Chem 53:3587

    Article  CAS  Google Scholar 

  6. Herrmann WA, Fischer RW, Marz DW (1991) Angew Chem Int Ed 30:1638

    Article  Google Scholar 

  7. Vos DE, Sels BF, Reynaers M, Subba Rao YV, Jacobs PA (1998) Tetrahedron Lett 39:3221

    Article  Google Scholar 

  8. Copéret C, Adolfsson H, Sharpless KB (1997) Chem Commun 1565

  9. Rudler H, Gregorio JR, Denise B, Brégeault JM, Deloffre A (1998) J Mol Catal A 133:255

    Article  CAS  Google Scholar 

  10. van Vliet MCA, Arends IWCE, Sheldon RA (1999) Chem Commun 821

  11. Tsuji Y, Ohta T, Ido T, Minbu H, Watanabe Y (1984) J Organomet Chem 270:333

    Article  CAS  Google Scholar 

  12. Yang DH, Gao L, Zhao WJ (2008) Catal Lett 126:84

    Article  CAS  Google Scholar 

  13. Zhao J, Han J, Zhang YC (2005) J Mol Catal A 231:129

    Article  CAS  Google Scholar 

  14. Barak G, Dakka J, Sasson Y (1988) J Org Chem 53:3553

    Article  CAS  Google Scholar 

  15. Marko IE, Gautier A, Chelle-Regnaut I, Giles PR, Tsukazaki M, Urch CJ, Brown SM (1998) J Org Chem 63:7576

    Article  CAS  Google Scholar 

  16. Wang RM, Hao CJ, He YF, Wang YP, Xia CG (2002) Polym Adv Technol 13:6

    Article  CAS  Google Scholar 

  17. Abdi SHR, Kureshy RI, Khan NH, Jasra RV (2004) Catal Surv Jpn 8:187

    Article  CAS  Google Scholar 

  18. Halligudi SB, Devassy BM, Kala Raj NK, Degaonkar MP, Gopinathan S (2000) React Kinet Catal Lett 71:289

    Article  CAS  Google Scholar 

  19. Fernández I, Pedro JR, Roselló AL, Ruiz R, Castro I, Ottenwaelder X, Journaux Y (2001) Eur J Org Chem 7:1235

    Article  Google Scholar 

  20. Atlay MT, Preece M, Strukul G, James BR (1982) J Chem Soc Chem Commun 406

  21. Atlay MT, Preece M, Strukul G, James BR (1983) Can J Chem 61:1332

    Article  CAS  Google Scholar 

  22. Strukul G, Michelin RA, Orbell JD, Randaccio L (1983) Inorg Chem 22:3706

    Article  CAS  Google Scholar 

  23. Strukul G, Michelin RA (1984) J Chem Soc Chem Commun 1538

  24. Strukul G, Michelin RA (1985) J Am Chem Soc 107:7563

    Article  CAS  Google Scholar 

  25. Zanardo A, Pinna F, Michelin RA, Strukul G (1988) Inorg Chem 27:1966

    Article  CAS  Google Scholar 

  26. Colladon M, Scarso A, Sgarbossa P, Michelin RA, Strukul G (2007) J Am Chem Soc 129:7685

    Article  Google Scholar 

  27. Colladon M, Scarso A, Sgarbossa P, Michelin RA, Strukul G (2006) J Am Chem Soc 128:14007

    Article  Google Scholar 

  28. Strukul G, Michelin RA (1984) JCS Chem Commun 1538

  29. Colladon M, Scarso A, Strukul G (2007) Adv Synth Catal 349:797

    Article  CAS  Google Scholar 

  30. Trost BM (1995) Angew Chem Int Ed 34:259

    Article  CAS  Google Scholar 

  31. Strukul G (ed) (1992) Catalytic oxidations with hydrogen peroxide as oxidant. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  32. Grigoropoulou G, Clark JH, Elings JA (2003) Green Chem 5:1

    Article  CAS  Google Scholar 

  33. Lane BS, Burgess K (2003) Chem Rev 103:2457

    Article  CAS  Google Scholar 

  34. Noyori R, Aoki M, Sato K (2003) Chem Commun 1977

  35. Takeuchi D (2010) Dalton Trans 39:311

    Article  CAS  Google Scholar 

  36. Mimoun H, Charpentier R, Mitschler A, Fischer J, Weiss R (1980) J Am Chem Soc 102:1047

    Article  CAS  Google Scholar 

  37. Igersheim F, Mimoun H (1980) Nouv J Chim 4:711

    CAS  Google Scholar 

  38. Bregeault JM, Mimoun H (1981) Nouv J Chim 5:287

    CAS  Google Scholar 

  39. Roussel M, Mimoun H (1980) J Org Chem 45:5381

    Article  Google Scholar 

  40. Cooper RI, Thompson AL, Watkin DJ (2010) J Appl Crystallogr 43:1100

    Article  CAS  Google Scholar 

  41. Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ (2003) J Appl Crystallogr 36:1487

    Article  CAS  Google Scholar 

  42. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A (1993) J Appl Crystallogr 26:343

    Article  Google Scholar 

  43. Sheldrick GM (2008) Acta Crystallogr A 64:112

    Article  CAS  Google Scholar 

  44. Farrugia LJ (1999) J Appl Crystallogr 32:837

    Article  CAS  Google Scholar 

  45. Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R (2002) Acta Crystallogr B 58:389

    Article  Google Scholar 

  46. Watkin DJ, Prout CK, Pearce LJ (1996) CAMERON. Chemical Crystallography Laboratory, Oxford

    Google Scholar 

  47. Rao PS, Reddy KV, Reddy KV (1997) Int J Rapid Commun Synth Org Chem 27:19

    Google Scholar 

  48. Biyala MK, Sharma K, Swami M, Fahmi N, Singh RV (2008) Transition Met Chem 33:377

    Article  CAS  Google Scholar 

  49. Lever ABP (1968) Inorganic electronic spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  50. Bahuleyan BK, Lee UK, Ha CS, Kim I (2008) Appl Catal A 351:36

    Article  CAS  Google Scholar 

  51. Jie S, Zhang D, Zhang T, Sun WH, Chen J, Ren Q, Liu D, Zheng G, Chen W (2005) J Organomet Chem 691:1739

    Article  Google Scholar 

  52. Kovach J, Peralta M, Brennessel WW, Jones WD (2011) J Mol Struct 992:33

    Article  CAS  Google Scholar 

  53. Prasetyoko D, Fansuri H, Ramli Z, Endud S, Nur H (2009) Catal Lett 128:177

    Article  CAS  Google Scholar 

  54. Chin TK, Endud S, Jamil S, Budagumpi S, Lintang HO (2013) Catal Lett 143:282

    Article  CAS  Google Scholar 

  55. Ghorbanloo M, Monfared HH, Janiak C (2011) J Mol Catal A Chem 345:12

    Article  CAS  Google Scholar 

  56. Altmann P, Cokoja M, Kühn FE (2012) J Organomet Chem 701:51

    Article  CAS  Google Scholar 

  57. Yadav GD, Pujari AA (2000) Org Proc Res Dev 4:88

    Article  CAS  Google Scholar 

  58. Lu XH, Lei J, Zhou D, Fang SY, Dong YL, Xia QH (2010) Indian J Chem 49:1586

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to USIC, Karnatak University, Dharwad, for providing spectral facilities. Recording of NMR and IR spectra from IISc-Bangalore and IIT-Bombay is gratefully acknowledged. One of the authors (Sandeep P. Netalkar) is thankful to Department of Science & Technology for providing financial assistance under INSPIRE fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidyanand K. Revankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Netalkar, S.P., Nevrekar, A.A. & Revankar, V.K. Design, Synthesis and Characterization of Bimetallic Palladium Complexes for Terminal Olefin Epoxidation. Catal Lett 144, 1573–1583 (2014). https://doi.org/10.1007/s10562-014-1315-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1315-4

Keywords

Navigation