Skip to main content
Log in

CO Oxidation Over Monolayer Manganese Oxide Films on Pt(111)

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ultrathin manganese oxide films grown on Pt(111) were examined in the low temperature CO oxidation reaction at near atmospheric pressures. Structural characterization was performed by X-ray photoelectron spectroscopy, Auger electron spectroscopy, high-resolution electron energy loss spectroscopy, and temperature programmed desorption. The results show that the reactivity of MnOx ultrathin films is governed by a weakly bonded oxygen species, which may even be formed at low oxygen pressures (~10−6 mbar). For stable catalytic performance at realistic conditions the films required highly oxidizing conditions (CO:O2 < 1:10), otherwise the films dewetted, ultimately resulting in the catalyst deactivation. Comparison with other thin films on Pt(111) shows, that the desorption temperature of weakly bonded oxygen species can be used as a benchmark for its activity in this reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Freund H-J, Pacchioni G (2008) Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem Soc Rev 37(10):2224–2242

    Article  CAS  Google Scholar 

  2. Giordano L, Pacchioni G (2011) Oxide films at the nanoscale: new structures, new functions, and new materials. Acc Chem Res 44(11):1244–1252

    Article  CAS  Google Scholar 

  3. Shaikhutdinov S, Freund H-J (2012) Ultrathin oxide films on metal supports: structure-reactivity relations. Annu Rev Phys Chem 63(1):619–633

    Article  CAS  Google Scholar 

  4. Ackermann MD et al (2005) Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. Phys Rev Lett 95(25):255505

    Article  CAS  Google Scholar 

  5. Gustafson J et al (2008) Sensitivity of catalysis to surface structure: the example of CO oxidation on Rh under realistic conditions. Phys Rev B 78(4):045423

    Article  Google Scholar 

  6. Lundgren E et al (2006) Surface oxides on close-packed surfaces of late transition metals. J Phys: Condens Matter 18(30):R481

    CAS  Google Scholar 

  7. Sun YN et al (2009) Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J Catal 266(2):359–368

    Article  CAS  Google Scholar 

  8. Hellman A, Klacar S, Grönbeck H (2009) Low temperature CO oxidation over supported ultrathin MgO films. J Am Chem Soc 131(46):16636–16637

    Article  CAS  Google Scholar 

  9. He YB et al (2008) Oxidation of Ir(111): from O–Ir–O trilayer to bulk oxide formation. J Phys Chem C 112(31):11946–11953

    Article  CAS  Google Scholar 

  10. Sun Y-N et al (2010) The interplay between structure and CO oxidation catalysis on metal-supported ultrathin oxide films. Angew Chem 49(26):4418–4421

    Article  CAS  Google Scholar 

  11. Rogal J, Reuter K, Scheffler M (2008) CO oxidation on Pd(100) at technologically relevant pressure conditions: first-principles kinetic Monte Carlo study. Phys Rev B 77(15):155410

    Article  Google Scholar 

  12. Gustafson J et al (2004) Self-limited growth of a thin oxide layer on Rh(111). Phys Rev Lett 92(12):126102

    Article  CAS  Google Scholar 

  13. Flege JI, Hrbek J, Sutter P (2008) Structural imaging of surface oxidation and oxidation catalysis on Ru(0001). Phys Rev B 78(16):165407

    Article  Google Scholar 

  14. Martynova Y et al (2013) CO oxidation over ZnO films on Pt(111) at near-atmospheric pressures. J Catal 301:227–232

    Article  CAS  Google Scholar 

  15. Hagendorf C et al (2008) Growth, atomic structure, and vibrational properties of MnO ultrathin films on Pt(111). Phys Rev B 77(7):075406

    Article  Google Scholar 

  16. Sachert S et al (2010) Thickness dependent vibrational and electronic properties of MnO(100) thin films grown on Pt(111). Phys Rev B 81(19):195424

    Article  Google Scholar 

  17. Rizzi GA et al (2001) An X-ray photoelectron diffraction structural characterization of an epitaxial MnO ultrathin film on Pt(111). Surf Sci 482–485(Part 2(0)):1474–1480

    Article  Google Scholar 

  18. Müller F et al (2002) Epitaxial growth of MnO/Ag(001) films. Surf Sci 520(3):158–172

    Article  Google Scholar 

  19. Li F et al (2009) Two-dimensional manganese oxide nanolayers on Pd(100): the surface phase diagram. J Phys: Condens Matter 21(13):134008

    CAS  Google Scholar 

  20. Nishimura H et al (2000) Surface structure of MnO/Rh(100) studied by scanning tunneling microscopy and low-energy electron diffraction. AVS, Seattle

    Google Scholar 

  21. Zhang L et al (2012) Growth and vibrational properties of MnOx thin films on Rh(111). Surf Sci 606(19–20):1507–1511

    Article  CAS  Google Scholar 

  22. Schnadt J et al (2012) The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab. J Synchrotron Radiat 19(5):701–704

    Article  CAS  Google Scholar 

  23. Feulner P, Menzel D (1980) Simple ways to improve “flash desorption” measurements from single crystal surfaces. J Vac Sci Technol 17(2):662–663

    Article  CAS  Google Scholar 

  24. Kostov KL et al (2013) Surface-phonon dispersion of a NiO(100) thin film. Phys Rev B 87(23):235416

    Article  Google Scholar 

  25. Franchini C et al (2006) Density functional study of the polar MnO(111) surface. Phys Rev B 73(15):155402

    Article  Google Scholar 

  26. Martynova Y et al (2012) Low temperature CO oxidation on ruthenium oxide thin films at near-atmospheric pressures. Catal Lett 142(6):657–663

    Article  CAS  Google Scholar 

  27. Bagus PS, Ilton ES (2006) Effects of covalency on the p-shell photoemission of transition metals: MnO. Phys Rev B 73(15):155110

    Article  Google Scholar 

Download references

Acknowledgments

The Swedish part of the work was supported by the Swedish Research Council (VR) and the Göran Gustafsson Foundation. Prof. J. Schnadt, Dr. J. Knudsen and the MAX-lab staff are gratefully acknowledged for their support. The FHI team acknowledges the support from the COST Action CM1104 “Reducible oxide chemistry, structure and functions”. WW, SS, and SP gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft through SFB 762 “Functionality of Oxidic Interfaces”. Finally, we thank Prof. L. Spiccia for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shaikhutdinov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martynova, Y., Soldemo, M., Weissenrieder, J. et al. CO Oxidation Over Monolayer Manganese Oxide Films on Pt(111). Catal Lett 143, 1108–1115 (2013). https://doi.org/10.1007/s10562-013-1117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1117-0

Keywords

Navigation