Skip to main content

Advertisement

Log in

Electrifying Oxide Model Catalysis: Complex Electrodes Based on Atomically-Defined Oxide Films

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

By studying complex model catalysts based on well-defined oxide surfaces, fundamental insights have been obtained into the surface chemistry of many heterogeneously catalyzed processes. In this perspective, we summarize a series of studies, in which we have transferred this model catalysis approach to the field of electrocatalysis. Our model electrocatalysts consisted of Pt nanoparticles (NPs) grown on atomically-defined oxide films. Specifically, we used well-ordered Co3O4(111) thin films on an Ir(100) support. The Pt NPs were prepared by physical vapor deposition (PVD) and the particle size was varied from a few nanometers to the sub-nanometer size range. We prepared all model catalysts under ultra-high vacuum (UHV) conditions using a dedicated preparation system. This setup enables us to transfer the model catalysts from UHV into the electrochemical environment to apply various in-situ techniques without exposure to air. We investigated the stability window of pristine Co3O4(111) and Pt/Co3O4(111) using online inductively coupled plasma mass spectrometry (ICPMS), electrochemical infrared reflection absorption spectroscopy (EC-IRRAS), scanning tunneling microscopy (STM), ex-situ emersion X-ray photoelectron spectroscopy (XPS), and low energy electron diffraction (LEED). Within the stability window (pH 10, 0.3–1.1 VRHE) the surface structure of the model electrocatalysts is preserved. We analyzed identical samples both in UHV and in the electrochemical environment. Specifically, we applied synchrotron radiation photoelectron spectroscopy (SR-PES) and ex-situ emersion XPS to analyze the electronic structure and we used infrared reflection absorption spectroscopy (IRAS), temperature programmed desorption (TPD), EC-IRRAS, and cyclic voltammetry (CV) to study CO adsorption and oxidation. The model electrocatalysts show pronounced particle size effects and metal support interactions are shown to play a key role in their catalytic reactivity. Of particular importance is an interfacial Pt oxide, which is stabilized by the oxide support and exists at electrode potentials as low as 0.5 VRHE. Moreover, spillover effects enable new reaction mechanisms, which involve oxygen from the oxide support. This review demonstrates the potential of the model electrocatalysis approach to provide fundamental insights into complex oxide-based electrocatalysis.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted with permission from Ref. [37], Copyright 2018, American Chemical Society

Fig. 2

Reproduced with permission from Ref. [41], Copyright 2018, Nature Publishing Group

Fig. 3

Adapted with permission from Ref. [37], Copyright 2018, American Chemical Society (Color figure online)

Fig. 4

Reproduced with permission from Ref. [41], Copyright 2018, Nature Publishing Group

Fig. 5

Reproduced with permission from Ref. [38], Copyright 2018, American Chemical Society (Color figure online)

Fig. 6

Reproduced with permission from Ref. [36], Copyright 2018, American Chemical Society (Color figure online)

Fig. 7

Adapted with permission from Ref. [41], Copyright 2018, Nature Publishing Group

Fig. 8

Reproduced from Ref. [40] with permission from the PCCP Owner Society

Fig. 9

Reproduced from Ref. [40] with permission from the PCCP Owner Society

Fig. 10

Adapted with permission from Ref. [41], Copyright 2018, Nature Publishing Group (Color figure online)

Fig. 11

Reproduced with permission from Ref. [38], Copyright 2018, American Chemical Society (Color figure online)

Fig. 12

Reproduced with permission from Ref. [38], Copyright 2018, American Chemical Society

Similar content being viewed by others

References

  1. Kuhlenbeck H, Shaikhutdinov S, Freund H-J (2013) Chem Rev 113:3986–4034

    CAS  PubMed  Google Scholar 

  2. Farmer JA, Campbell CT (2010) Science 329:933–936

    CAS  PubMed  Google Scholar 

  3. Schauermann S, Hoffmann J, Johanek V, Hartmann J, Libuda J, Freund H-J (2002) Angew Chem Int Ed 41:2532

    CAS  Google Scholar 

  4. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Perez M (2007) Science 318:1757–1760

    CAS  PubMed  Google Scholar 

  5. Lykhach Y, Kozlov SM, Skala T, Tovt A, Stetsovych V, Tsud N, Dvorak F, Johanek V, Neitzel A, Myslivecek J, Fabris S, Matolín V, Neyman KM, Libuda J (2016) Nat Mater 15:284–288

    CAS  PubMed  Google Scholar 

  6. Vayssilov GN, Lykhach Y, Migani A, Staudt T, Petrova GP, Tsud N, Skála T, Bruix A, Illas F, Prince KC, Matolín V, Neyman KM, Libuda J (2011) Nat Mater 10:310–315

    CAS  PubMed  Google Scholar 

  7. Freund H-J, Kuhlenbeck H, Libuda J, Rupprechter G, Bäumer M, Hamann H (2001) Top Catal 15:201–209

    CAS  Google Scholar 

  8. Kolb DM (2001) Angew Chem Int Ed 40:1162–1181

    CAS  Google Scholar 

  9. Korzeniewski C, Climent V, Feliu JM (2012) In: Bard AJ, Zoski C (eds) Electroanalytical chemistry: a series of advances, vol 24. CRC Press, Boca Raton, pp 75–170

    Google Scholar 

  10. Weaver MJ, Gao XP (1993) Annu Rev Phys Chem 44:459–494

    CAS  Google Scholar 

  11. Kolb DM (2011) J Solid State Electrochem 15:1391–1399

    CAS  Google Scholar 

  12. Koper MT (2011) Nanoscale 3:2054–2073

    CAS  PubMed  Google Scholar 

  13. Clavilier J, Faure R, Guinet G, Durand R (1979) J Electroanal Chem Interfacial Electrochem 107:205–209

    Google Scholar 

  14. Magnussen OM, Groß A (2019) J Am Chem Soc 141:4777–4790

    CAS  PubMed  Google Scholar 

  15. Xu C, Shen PK (2004). Chem Commun:2238–2239.

  16. Xu C, Shen PK (2005) J Power Sources 142:27–29

    CAS  Google Scholar 

  17. Xu C, Zeng R, Shen PK, Wei Z (2005) Electrochim Acta 51:1031–1035

    CAS  Google Scholar 

  18. Xu C, Shen PK, Ji X, Zeng R, Liu Y (2005) Electrochem Commun 7:1305–1308

    CAS  Google Scholar 

  19. Shen PK, Xu C (2006) Electrochem Commun 8:184–188

    CAS  Google Scholar 

  20. Xu C (2007) Shen Pk, Liu Y. J Power Sources 164:527–531

    CAS  Google Scholar 

  21. Xu C, Tian Z, Shen P, Jiang SP (2008) Electrochim Acta 53:2610–2618

    CAS  Google Scholar 

  22. Antolini E, Gonzalez ER (2010) J Power Sources 195:3431–3450

    CAS  Google Scholar 

  23. Lykhach Y, Bruix A, Fabris S, Potin V, Matolínová I, Matolín V, Libuda J, Neyman KM (2017) Cat Sci Technol 7:4315–4345

    CAS  Google Scholar 

  24. Lykhach Y, Brummel O, Bruix A, Fabris S, Matolínová I, Matolín V, Neyman KM, Libuda J (2018) In: Wandelt K (ed) Encyclopedia of interfacial chemistry. Elsevier, Oxford, pp 189–201

    Google Scholar 

  25. Brummel O, Waidhas F, Faisal F, Fiala R, Vorokhta M, Khalakhan I, Dubau M, Figueroba A, Kovács G, Aleksandrov HA, Vayssilov GN, Kozlov SM, Neyman KM, Matolín V, Libuda J (2016) J Phys Chem C 120:19723–19736

    CAS  Google Scholar 

  26. Hoster HE, Gasteiger HA (2010) In: Handbook of fuel cells. Wiley, Hoboken

    Google Scholar 

  27. Mercer MP, Hoster HE (2016) Nano Energy 29:394–413

    CAS  Google Scholar 

  28. Kolb DM (1987) Z Phys Chem 154:179

    CAS  Google Scholar 

  29. Brimaud S, Engstfeld AK, Alves OB, Hoster HE, Behm RJ (2014) Top Catal 57:222–235

    CAS  Google Scholar 

  30. Bergbreiter A, Alves OB, Hoster HE (2010) ChemPhysChem 11:1505–1512

    CAS  PubMed  Google Scholar 

  31. Stamenković VR, Arenz M, Lucas CA, Gallagher ME, Ross PN, Marković NM (2003) J Am Chem Soc 125:2736–2745

    PubMed  Google Scholar 

  32. Schnaidt J, Beckord S, Engstfeld AK, Klein J, Brimaud S, Behm RJ (2017) Phys Chem Chem Phys 19:4166–4178

    CAS  PubMed  Google Scholar 

  33. Müllner M, Balajka J, Schmid M, Diebold U, Mertens SFL (2017) J Phys Chem C 121:19743–19750

    Google Scholar 

  34. Müllner M, Riva M, Kraushofer F, Schmid M, Parkinson GS, Mertens SFL, Diebold U (2019) J Phys Chem C 123:8304–8311

    Google Scholar 

  35. Fester J, Makoveev A, Grumelli D, Gutzler R, Sun Z, Rodríguez-Fernández J, Kern K, Lauritsen JV (2018) Angew Chem Int Ed 57:11893–11897

    CAS  Google Scholar 

  36. Brummel O, Lykhach Y, Vorokhta M, Šmíd B, Stumm C, Faisal F, Skála T, Tsud N, Neitzel A, Beranová K, Prince KC, Matolín V, Libuda J (2019) J Phys Chem C 123:8746–8758

    CAS  Google Scholar 

  37. Faisal F, Bertram M, Stumm C, Cherevko S, Geiger S, Kasian O, Lykhach Y, Lytken O, Mayrhofer KJJ, Brummel O, Libuda J (2018) J Phys Chem C 122:7236–7248

    CAS  Google Scholar 

  38. Faisal F, Bertram M, Stumm C, Wähler T, Schuster R, Lykhach Y, Neitzel A, Skála T, Tsud N, Beranová K, Prince KC, Matolín V, Brummel O, Libuda J (2018) J Phys Chem C 122:20787–20799

    CAS  Google Scholar 

  39. Faisal F, Bertram M, Stumm C, Waidhas F, Brummel O, Libuda J (2018) Rev Sci Instrum 89:114101

    PubMed  Google Scholar 

  40. Faisal F, Stumm C, Bertram M, Wähler T, Schuster R, Xiang F, Lytken O, Katsounaros I, Mayrhofer KJJ, Schneider MA, Brummel O, Libuda J (2018) Phys Chem Chem Phys 20:23702–23716

    CAS  PubMed  Google Scholar 

  41. Faisal F, Stumm C, Bertram M, Waidhas F, Lykhach Y, Cherevko S, Xiang F, Ammon M, Vorokhta M, Šmíd B, Skala T, Tsud N, Neitzel A, Beranova K, Prince K, Geiger S, Kasian O, Wähler T, Schuster R, Schneider M, Matolin V, Mayrhofer K, Brummel O, Libuda J (2018) Nat Mater 17:592–598

    CAS  PubMed  Google Scholar 

  42. Pajkossy T, Wandlowski T, Kolb DM (1996) J Electroanal Chem 414:209–220

    Google Scholar 

  43. Sonnenfeld R, Hansma PK (1986) Science 232:211–214

    CAS  PubMed  Google Scholar 

  44. Sonnenfeld R, Schardt BC (1986) Appl Phys Lett 49:1172–1174

    CAS  Google Scholar 

  45. Manne S, Hansma PK, Massie J, Elings VB, Gewirth AA (1991) Science 251:183–186

    CAS  PubMed  Google Scholar 

  46. Favaro M, Jeong B, Ross PN, Yano J, Hussain Z, Liu Z, Crumlin EJ (2016) Nat Commun 7:12695

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Favaro M, Abdi FF, Crumlin EJ, Liu Z, van de Krol R, Starr DE (2019) Surfaces 2:78–99

    Google Scholar 

  48. Baltruschat H (2004) J Am Soc Mass Spectrom 15:1693–1706

    CAS  PubMed  Google Scholar 

  49. Grimaud A, Diaz-Morales O, Han BH, Hong WT, Lee YL, Giordano L, Stoerzinger KA, Koper MTM, Shao-Horn Y (2017) Nat Chem 9:457–465

    CAS  PubMed  Google Scholar 

  50. Khanipour P, Löffler M, Reichert AM, Haase FT, Mayrhofer KJJ, Katsounaros I (2019) Angew Chem Int Ed 58:7273–7277

    CAS  Google Scholar 

  51. Braunschweig B, Mukherjee P, Dlott DD, Wieckowski A (2010) J Am Chem Soc 132:14036–14038

    CAS  PubMed  Google Scholar 

  52. Bewick A, Kunimatsu K, Pons BS, Russell JW (1984) J Electroanal Chem Interfacial Electrochem 160:47–61

    CAS  Google Scholar 

  53. Bewick A, Kunimatsu K (1980) Surf Sci 101:131–138

    CAS  Google Scholar 

  54. Iwasita T, Nart FC (1997) Prog Surf Sci 55:271–340

    CAS  Google Scholar 

  55. Soriaga MP (1992) Prog Surf Sci 39:325–443

    CAS  Google Scholar 

  56. Parsons R (1989) In: Compton RG (ed) Comprehensive chemical kinetics, vol 29. Elsevier, Amsterdam, pp 105–127

    Google Scholar 

  57. Hans-Joachim F, Helmut K, Volker S (1996) Rep Prog Phys 59:283

    Google Scholar 

  58. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Nat Mater 10:780

    CAS  PubMed  Google Scholar 

  59. Jiao F, Frei H (2009) Angew Chem Int Ed 48:1841–1844

    CAS  Google Scholar 

  60. Sun S, Sun L, Xi S, Du Y, Prathap MUA, Wang Z, Zhang Q, Fisher A, Xu ZJ (2017) Electrochim Acta 228:183–194

    CAS  Google Scholar 

  61. Reikowski F, Maroun F, Pacheco I, Wiegmann T, Allongue P, Stettner J, Magnussen OM (2019) ACS Catal 9:3811–3821

    CAS  Google Scholar 

  62. Heinz K, Hammer L (2013) J Phys Condens Matter 25:173001

    CAS  PubMed  Google Scholar 

  63. Meyer W, Biedermann K, Gubo M, Hammer L, Heinz K (2008) J Phys: Condens Matter 20:265011–265017

    CAS  Google Scholar 

  64. Ferstl P, Mehl S, Arman MA, Schuler M, Toghan A, Laszlo B, Lykhach Y, Brummel O, Lundgren E, Knudsen J, Hammer L, Schneider MA, Libuda J (2015) J Phys Chem C 119:16688–16699

    CAS  Google Scholar 

  65. Chivot J, Mendoza L, Mansour C, Pauporté T, Cassir M (2008) Corros Sci 50:62–69

    CAS  Google Scholar 

  66. Schuppert AK, Topalov AA, Katsounaros I, Klemm SO, Mayrhofer KJJ (2012) J Electrochem Soc 159:F670–F675

    CAS  Google Scholar 

  67. Klemm SO, Topalov AA, Laska CA, Mayrhofer KJJ (2011) Electrochem Commun 13:1533–1535

    CAS  Google Scholar 

  68. Lykhach Y, Faisal F, Skála T, Neitzel A, Tsud N, Vorokhta M, Dvořák F, Beranová K, Kosto Y, Prince KC, Matolín V, Libuda J (2018) J Mater Chem A 6:23078–23086

    CAS  Google Scholar 

  69. Schalow T, Laurin M, Brandt B, Schauermann S, Guimond S, Kuhlenbeck H, Starr DE, Shaikhutdinov SK, Libuda J, Freund H-J (2005) Angew Chem Int Ed 44:7601–7605

    CAS  Google Scholar 

  70. Cherevko S, Zeradjanin AR, Keeley GP, Mayrhofer KJJ (2014) J Electrochem Soc 161:H822–H830

    Google Scholar 

  71. Freund H-J, Meijer G, Scheffler M, Schlögl R, Wolf M (2011) Angew Chem Int Ed 50:10064–10094

    CAS  Google Scholar 

  72. Engel T, Ertl G (1979) In: Eley DD, Pines H, Weez PB (eds) Advances in catalysis, vol 28. Academic Press, Amsterdam, pp 1–78

    Google Scholar 

  73. Beden B, Lamy C, de Tacconi NR, Arvia AJ (1990) Electrochim Acta 35:691–704

    CAS  Google Scholar 

  74. García G, Koper M (2011) ChemPhysChem 12:2064–2072

    PubMed  Google Scholar 

  75. Mayrhofer KJJ, Arenz M, Blizanac BB, Stamenkovic V, Ross PN, Markovic NM (2005) Electrochim Acta 50:5144–5154

    CAS  Google Scholar 

  76. Koper MTM, Lai SCS, Herrero E (2008) Fuel cell catalysis. Wiley, Hoboken, pp 159–207

    Google Scholar 

  77. Batista EA, Iwasita T, Vielstich W (2004) J Phys Chem B 108:14216–14222

    CAS  Google Scholar 

  78. Farias MJS, Vidal-Iglesias FJ, Solla-Gullón J, Herrero E, Feliu JM (2014) J Electroanal Chem 716:16–22

    CAS  Google Scholar 

  79. Spendelow JS, Goodpaster JD, Kenis PJA, Wieckowski A (2006) J Phys Chem B 110:9545–9555

    CAS  PubMed  Google Scholar 

  80. Hoffmann FM (1983) Surf Sci Rep 3:107–192

    CAS  Google Scholar 

  81. DeRita L, Dai S, Lopez-Zepeda K, Pham N, Graham GW, Pan X, Christopher P (2017) J Am Chem Soc 139:14150–14165

    CAS  PubMed  Google Scholar 

  82. Thang HV, Pacchioni G, DeRita L, Christopher P (2018) J Catal 367:104–114

    CAS  Google Scholar 

  83. Sheu LL, Karpinski Z, Sachtler WMH (1989) J Phys Chem 93:4890–4894

    CAS  Google Scholar 

  84. Kleis J, Greeley J, Romero NA, Morozov VA, Falsig H, Larsen AH, Lu J, Mortensen JJ, Dułak M, Thygesen KS, Nørskov JK, Jacobsen KW (2011) Catal Lett 141:1067–1071

    CAS  Google Scholar 

  85. Hayden BE, Suchsland J-P (2008) Fuel cell catalysis. Wiley, Hoboken, pp 567–592

    Google Scholar 

  86. Maillard F, Pronkin S, Savinova ER (2008) Fuel cell catalysis. Wiley, Hoboken, pp 507–566

    Google Scholar 

  87. Kinne M, Fuhrmann T, Whelan CM, Zhu JF, Pantforder J, Probst M, Held G, Denecke R, Steinrück HP (2002) J Chem Phys 117:10852–10859

    CAS  Google Scholar 

  88. Gisbert R, García G, Koper MTM (2010) Electrochim Acta 55:7961–7968

    CAS  Google Scholar 

  89. Gisbert R, García G, Koper MTM (2011) Electrochim Acta 56:2443–2449

    CAS  Google Scholar 

  90. Cheng C-S, Serizawa M, Sakata H, Hirayama T (1998) Mater Chem Phys 53:225–230

    CAS  Google Scholar 

  91. Campbell CT (2012) Nat Chem 4:597–598

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) and within the Cluster of Excellence “Engineering of Advanced Materials”, by the Deutsche Forschungsgemeinschaft (DFG) within the Research Unit FOR 1878 “Functional Molecular Structures on Complex Oxide Surfaces” and by the DFG within the Priority Program 1708 “Materials Synthesis near Room Temperature” (Project numbers 322419553, 214951840, 252578361, 392607742). Furthermore, the authors acknowledge support by Federal Ministry of Education and Research (05K19WE1, project ‘CIXenergy’), the Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH and by the Bavarian Ministry of Economic Affairs, Regional Development and Energy. Finally, the authors would like to thank Maximilian Ammon, Klara Beranova, Manon Bertram, Serhiy Cherevko, Firas Faisal, Simon Geiger, Olga Kasian, Ioannis Katsounaros, Yaroslava Lykhach, Ole Lytken, Vladimír Matolín, Karl J. J. Mayrhofer, Armin Neitzel, Kevin Prince, M. Alexander Schneider, Ralf Schuster, Tomáš Skála, Břetislav Šmíd, Corinna Stumm, Nataliya Tsud, Mykhailo Vorokhta, Tobias Wähler, Fabian Waidhas, and Feifei Xiang for their contributions to the research projects described in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Brummel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brummel, O., Libuda, J. Electrifying Oxide Model Catalysis: Complex Electrodes Based on Atomically-Defined Oxide Films. Catal Lett 150, 1546–1560 (2020). https://doi.org/10.1007/s10562-019-03078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03078-x

Keywords

Navigation