Skip to main content
Log in

Effects of Cu–ZnO Content on Reaction Rate for Direct Synthesis of DME from Syngas with Bifunctional Cu–ZnO/γ-Al2O3 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effects of Cu–ZnO content on the performance of bifunctional Cu–ZnO/γ-Al2O3 catalysts for dimethyl ether (DME) synthesis from syngas were investigated by varying the weight ratios of Cu–ZnO/γ-Al2O3 prepared by the coprecipitation of Cu–ZnO in a slurry of γ-Al2O3. A higher rate of DME production with CO conversion of 47.6 % and DME selectivity of 61.1 % was observed with the bifunctional catalyst at an optimal weight ratio of CuO/γ-Al2O3 of two, providing a higher surface area of metallic copper and an abundance of weak acid sites. The number of acidic sites on solid-acid γ-Al2O3 is a more crucial factor to enhance DME yield, due to the faster dehydration rate of methanol to DME than that of CO hydrogenation to methanol. Although the first step of methanol synthesis on active copper sites is a rate-limiting step with a low equilibrium value, the second step of the dehydration of methanol to DME on acid sites adjusts the overall rate by enhancing the forward reaction rate of CO hydrogenation to methanol with a simultaneous formation of surplus hydrogen by a water–gas shift reaction. Therefore, the proper design of a high surface area of metallic copper with larger acid sites on the bifunctional CuO–ZnO/γ-Al2O3 catalysts at an optimal ratio, produced by adjusting the weight ratio of CuO/γ-Al2O3, is an important factor for improved catalytic performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gupta M, Smith ML, Spivey JJ (2011) ACS Catal 1(6):641

    Article  CAS  Google Scholar 

  2. Ng KL, Chadwick D, Toseland BA (1999) Chem Eng Sci 54:3587

    Article  CAS  Google Scholar 

  3. Gao Z, Huang W, Yin L, Hao L, Xie K (2009) Catal Lett 127:354

    Article  CAS  Google Scholar 

  4. Chen WH, Lin BJ, Lee HM, Huang MH (2012) Appl Energy 98:92

    Article  CAS  Google Scholar 

  5. Aguayo AT, Erena J, Mier D, Arandes JM, Olazar M, Bilbao J (2007) Ind Eng Chem Res 46:5522

    Article  CAS  Google Scholar 

  6. Pokrovski KA, Bell AT (2006) J Catal 241:276

    Article  CAS  Google Scholar 

  7. Bae JW, Potdar HS, Kang SH, Jun KW (2008) Energy Fuels 22:223

    Article  CAS  Google Scholar 

  8. Kang SH, Bae JW, Kim HS, Dhar GM, Jun KW (2010) Energy Fuels 24:804

    Article  CAS  Google Scholar 

  9. Prasad PSS, Bae JW, Kang SH, Lee YJ, Jun KW (2008) Fuel Process Technol 89:1281

    Article  CAS  Google Scholar 

  10. Bae JW, Kang SH, Lee YJ, Jun KW (2009) J Ind Eng Chem 15:566

    Article  CAS  Google Scholar 

  11. Kang SH, Bae JW, Jun KW, Potdar HS (2008) Catal Commun 9:2035

    Article  CAS  Google Scholar 

  12. Okamoto Y, Fukino K, Imanaka T, Teranishi S (1983) J Phys Chem 87:3740

    Article  CAS  Google Scholar 

  13. Venugopal A, Palgunadi J, Jung KD, Joo OS, Shin CH (2009) J Mol Catal A 302:20

    Article  CAS  Google Scholar 

  14. Jung JW, Lee YJ, Um SH, Yoo PJ, Lee DH, Jun KW, Bae JW (2012) Appl Catal B 126:1

    Article  CAS  Google Scholar 

  15. Blaszkowski SR, van Santen RA (1997) J Phys Chem B 101:2292

    Article  CAS  Google Scholar 

  16. Mao D, Yang W, Xia J, Zhang B, Song Q, Chen Q (2005) J Catal 230:140

    Article  CAS  Google Scholar 

  17. Abu-Dahrieh J, Rooney D, Goguet A, Saih Y (2012) Chem Eng J 203:201

    Article  CAS  Google Scholar 

  18. Jensen JR, Johannessen T, Livbjerg H (2004) Appl Catal A 266:117

    Article  CAS  Google Scholar 

  19. Baltes C, Vukojevic S, Schuth F (2008) J Catal 258:334

    Article  CAS  Google Scholar 

  20. Behrens M (2009) J Catal 267:24

    Article  CAS  Google Scholar 

  21. Baek SC, Kang SH, Bae JW, Lee YJ, Lee DH, Lee KY (2011) Energy Fuels 25:2438

    Article  CAS  Google Scholar 

  22. Bae JW, Kang SH, Lee YJ, Jun KW (2009) Appl Catal B 90:426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of a National Research Foundation (NRF) of Korea Grant funded by the Korean government (MEST; 2011-0009003 and 2012R1A2A2A02013876). This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) under “Energy Efficiency & Resources Programs” with Project number of 2011T100200023. This work was also supported by the grant from the Industrial Source Technology Development Programs (2012-10042712) by the Korea government Ministry of Trade, Industry and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Wook Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, J.W., Ahn, CI., Lee, D.H. et al. Effects of Cu–ZnO Content on Reaction Rate for Direct Synthesis of DME from Syngas with Bifunctional Cu–ZnO/γ-Al2O3 Catalyst. Catal Lett 143, 666–672 (2013). https://doi.org/10.1007/s10562-013-1022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1022-6

Keywords

Navigation