Skip to main content
Log in

Bifunctional Silicotungstic Acid and Tungstophosphoric Acid Impregnated Cu–Zn–Al & Cu–Zn–Zr Catalysts for Dimethyl Ether Synthesis from Syngas

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In the present study, a set of methanol synthesis catalysts with different Cu/Zn/Al or Cu/Zn/Zr molar ratios were synthesized by a co-precipitation method. Silicotungstic acid and tungstophosphoric acid were impregnated into these materials to synthesize new bifunctional catalytic materials to be used in direct synthesis of dimethyl ether (DME) from syngas. In the case of methanol production, synthesized Cu/Zn/Al catalysts exhibited quite high methanol selectivity, reaching to approximately 87%. These results indicated that the dispersion of copper particles profoundly affected the selectivity of methanol. Direct synthesis of DME was investigated in the presence of heteropoly acid impregnated copper-based novel hybrid type bifunctional catalysts. Results revealed that product distributions were strongly influenced by the reaction temperature, pressure, heteropoly acid content, and type. Results proved that silicotungstic acid (STA) impregnated bifunctional catalysts showed much better catalytic performance than the tungstophosphoric acid (TPA) impregnated ones in DME synthesis from syngas. Very high dimethyl ether selectivity values were achieved in direct synthesis of dimethyl ether over the 25%, and 30% STA impregnated methanol synthesis catalysts, at 275 °C and 50 bar. DME selectivity presented an increasing trend due to the increase in heteropoly acid content over methanol synthesis catalysts. The silicotungstic acid incorporated (30%) Cu/Zn/Al catalyst, having a composition of 6/3/1 (30STA@CZA:631), showed the highest CO conversion and DME selectivity. However, coke formation over this catalyst was much more than the catalyst containing 25% STA. This is mainly due to the higher Bronsted acidity of 30STA@CZA:631 than 25STA@CZA:631. Low coke formation, together with quite high DME selectivity values achieved with 25STA@CZA:631, is a worthy distinction of this catalyst for the direct synthesis of DME from synthesis gas.

Graphic Abstract

Novel hybrid type catalysts are successfully synthesized for direct synthesis of dimethyl ether process. Heteropoly acid incorporated methanol synthesis catalysts are very active and stable in the direct synthesis of dimethyl ether process. Silicotungstic acid (STA) impregnated copper-based catalyst exhibits a superior performance than the tungstophosphoric acid impregnated catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Tasdemir HM (2019) Catal Lett 149:473–485. https://doi.org/10.1007/s10562-018-2634-7

    Article  CAS  Google Scholar 

  2. Gündüz S, Dogu T (2015) Appl Catal B 168–169:497–508. https://doi.org/10.1016/j.apcatb.2015.01.006

    Article  CAS  Google Scholar 

  3. Semelsberger TA, Borup RL, Greene HL (2006) J Power Sources 156:497–511. https://doi.org/10.1016/j.jpowsour.2005.05.082

    Article  CAS  Google Scholar 

  4. Ereña J, Garoña R, Arandes JM, Aguayo AT, Bilbao J (2005) Catal Today 107–108:467–473. https://doi.org/10.1016/j.cattod.2005.07.116

    Article  CAS  Google Scholar 

  5. Woo J, Jun Y, Ho S, Yoo PJ, Lee DH, Jun KW, Bae WB (2012) Appl Catal B 126:1–8. https://doi.org/10.1016/j.apcatb.2012.06.026

    Article  CAS  Google Scholar 

  6. Song F, Tan Y, Xie H, Zhang Q, Han Y (2014) Fuel Process Technol 126:88–94. https://doi.org/10.1016/j.fuproc.2014.04.021

    Article  CAS  Google Scholar 

  7. Mao D, Yang W, Xia J, Zhang B, Song Q, Chen Q (2005) J Catal 230:140–149. https://doi.org/10.1016/j.jcat.2004.12.007

    Article  CAS  Google Scholar 

  8. Erena J, Sierra I, Aguayo AT, Ateka A, Olaazar M, Bilbao J (2011) Chem Eng J 174:660–667. https://doi.org/10.1016/j.cej.2011.09.067

    Article  CAS  Google Scholar 

  9. Erena J, Garona R, Arandes JM, Aguayo AT, Bilbao J (2005) Int J Chem React Eng. https://doi.org/10.2202/1542-6580.1295

    Article  Google Scholar 

  10. Wang L, Fang D, Huang X, Zhang S, Qi Y, Liul Z (2006) J Nat Gas Chem 15:38–44. https://doi.org/10.1016/S1003-9953(06)60005-4

    Article  Google Scholar 

  11. Sang K, Kim J, Park M, Kim S, Joo O, Jung K (2007) Appl Catal A 330:57–62. https://doi.org/10.1016/j.apcata.2007.07.007

    Article  CAS  Google Scholar 

  12. Bayat A, Dogu T (2016) Ind Eng Chem Res 55:11431–11439. https://doi.org/10.1021/acs.iecr.6b03001

    Article  CAS  Google Scholar 

  13. Arbag H (2018) Int J Hydrogen Energy 43:6561–6574. https://doi.org/10.1016/j.ijhydene.2018.02.063

    Article  CAS  Google Scholar 

  14. Ciftci A, Varisli D, Dogu T (2010) Int J Chem React Eng. https://doi.org/10.2202/1542-6580.2151

    Article  Google Scholar 

  15. Varisli D, Dogu T, Dogu G (2010) Chem Eng Sci 65:153–159. https://doi.org/10.1016/j.ces.2009.01.066

    Article  CAS  Google Scholar 

  16. Varisli D, Dogu T, Dogu G (2008) Ind Eng Chem Res 47:4071–4076. https://doi.org/10.1021/ie800192t

    Article  CAS  Google Scholar 

  17. Lei H, Hou Z, Xie J (2016) Fuel 164:191–198. https://doi.org/10.1016/j.fuel.2015.09.082

    Article  CAS  Google Scholar 

  18. Dibenedetto A, Abgelini A, Stufano P (2013) J Chem Technol Biotechnol 89:334–353. https://doi.org/10.1002/jctb.4229

    Article  CAS  Google Scholar 

  19. Witoon T, Permsirivanich T, Donphai W (2013) Fuel Process Technol 116:72–78. https://doi.org/10.1016/j.fuproc.2013.04.024

    Article  CAS  Google Scholar 

  20. Baltes C, Vukojevis S, Schüth F (2008) J Catal 258:334–344. https://doi.org/10.1016/j.jcat.2008.07.004

    Article  CAS  Google Scholar 

  21. Grabowski R, Olszewski P, Kozłowska A, Stoch J, Lachowska M, Skrzypek J (2006) Appl Catal A 310:127–137. https://doi.org/10.1016/j.apcata.2006.05.035

    Article  CAS  Google Scholar 

  22. Gao P, Li F, Zhao N, Xiao F, Wei W, Zhong L (2013) Appl Catal A 468:442–452. https://doi.org/10.1016/j.apcata.2013.09.026

    Article  CAS  Google Scholar 

  23. Angelo L, Kobl K, Marcela L, Tejada M, Zimmermann Y, Parkhomenko K (2015) C R Chim 18:250–260. https://doi.org/10.1016/j.crci.2015.01.001

    Article  CAS  Google Scholar 

  24. Zhang L, Zhang Y, Chen S (2012) Appl Catal A 415–416:118–123. https://doi.org/10.1016/j.apcata.2011.12.013

    Article  CAS  Google Scholar 

  25. Fujitani T, Nakamura J (1998) Catal Lett 56:119–124. https://doi.org/10.1023/A:1019000927366

    Article  CAS  Google Scholar 

  26. Moradi G, Ahmadpour J, Nazari M, Yaripour F (2008) Ind Eng Chem Res 47:7672–7679. https://doi.org/10.1021/ie800888z

    Article  CAS  Google Scholar 

  27. Celik G, Arinan A, Bayat A, Ozbelge HO, Dogu T, Varisli D (2013) Top Catal 56:1764–1774. https://doi.org/10.1007/s11244-013-0112-4

    Article  CAS  Google Scholar 

  28. Phienluphon R, Pinkaew K, Yang G, Li J, Wei Q (2015) Chem Eng J 270:605–611. https://doi.org/10.1016/j.cej.2015.02.071

    Article  CAS  Google Scholar 

  29. Contador MS, Ateka A, Ibane M, Bilbao J, Aguayo AT (2019) Renew Energy 138:585–597. https://doi.org/10.1016/j.renene.2019.01.093

    Article  CAS  Google Scholar 

  30. Pinkaew K, Yang G, Vitidsant T, Jin Y, Zeng C (2013) Fuel 111:727–732. https://doi.org/10.1016/j.fuel.2013.03.027

    Article  CAS  Google Scholar 

  31. Nie R, Lei H, Pan S, Wang L, Fei J, Hou Z (2012) Fuel 96:419–425. https://doi.org/10.1016/j.fuel.2011.12.048

    Article  CAS  Google Scholar 

  32. Saito M, Fujitani T, Takeuchi M, Watanabe T (1996) Appl Catal A 138:311–318. https://doi.org/10.1016/0926-860X(95)00305-3

    Article  CAS  Google Scholar 

  33. Pekmezci B, Cakiryilmaz N, Arbag H, Oktar N, Dogu G, Dogu T (2017) Int J Hydrogen Energy 42:26257–26269. https://doi.org/10.1016/j.ijhydene.2017.08.155

    Article  CAS  Google Scholar 

  34. Tasdemir HM, Yagızatlı Y, Yasyerli S, Yasyerli N (2019) Int J Chem React Eng. https://doi.org/10.1515/ijcre-2018-0157

    Article  Google Scholar 

  35. Li D, Xu S, Cai Y, Chen C, Zhan Y, Jiang L (2017) Ind Eng Chem Res 56:3175–3183. https://doi.org/10.1021/acs.iecr.6b04337

    Article  CAS  Google Scholar 

  36. Kurr P, Kasatkin I, Girgsdies F, Trunschke A, Ressler T, Schlo R (2008) Appl Catal A 348:153–164. https://doi.org/10.1016/j.apcata.2008.06.020

    Article  CAS  Google Scholar 

  37. Ciftci A, Varisli D, Tokay KC, Sezgi NA, Dogu T (2012) Chem Eng J 207–208:85–93. https://doi.org/10.1016/j.cej.2012.04.016

    Article  CAS  Google Scholar 

  38. Basahel SN, Mokhtar M, Alsharaeh EH, Ali TT, Mahmoud HA, Narasimharao K (2016) Catalysts 6:57. https://doi.org/10.3390/catal6040057

    Article  CAS  Google Scholar 

  39. Guo W, Duan Z, Mabayoje O, Chemelewski W, Xiao P, Henkelman G, Zhang Y, Mullins CB (2016) J Electrochem Soc 163(10):H970–H975. https://doi.org/10.1149/2.0701610jes

    Article  CAS  Google Scholar 

  40. Ikizer B, Oktar N, Dogu T (2010) Fuel Process Technol 138:570–577. https://doi.org/10.1016/j.fuproc.2015.06.039

    Article  CAS  Google Scholar 

  41. Iyer SS, Renganathan T, Pushpavanam S, Vasudeva M (2015) Biochem Pharmacol 10:95–104. https://doi.org/10.1016/j.jcou.2015.01.006

    Article  CAS  Google Scholar 

  42. Liu X, Lu GQ, Yan Z (2003) Beltramini. J Ind Eng Chem Res 42:6518–6530. https://doi.org/10.1021/ie020979s

    Article  CAS  Google Scholar 

  43. Carter JH, Liu X, He Q, Althahban S, Nowicka E, Freakley SJ, Niu L, Morgan DJ, Li Y, Niemantsverdriet JWH, Golunski S, Kiely CJ, Hutchings GJ (2017) Angew Chem Int Ed 56:16037–16041. https://doi.org/10.1002/anie.201709708

    Article  CAS  Google Scholar 

  44. Obalı Z, Sezgi NA, Dogu T (2009) Chem Eng Commun 196:116–130. https://doi.org/10.1080/00986440802301537

    Article  CAS  Google Scholar 

  45. Erdogan B, Arbag H, Yasyerli N (2018) Int J Hydrog Energy 43:1396–1405. https://doi.org/10.1016/j.ijhydene.2017.11.127

    Article  CAS  Google Scholar 

  46. Arbag H, Yasyerli S, Yasyerli N, Dogu G, Dogu T, Crnivec IGO (2015) Ind Eng Chem Res 54:2290–2301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

TUBITAK (115M377) and Gazi University Research Fund (06/2017-09 and 06/2018-23) were gratefully acknowledged for financial support. The authors also thank the Central Laboratory of METU, Prof. Dr. Emrah OZENSOY Research Group, Messaoud Harfouche, and SESAME Synchrotron Laboratory for some of the characterization results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuray Oktar.

Ethics declarations

Conflict of interest

There is no conflict of interest for each contributing author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekmezci Karaman, B., Oktar, N., Doğu, G. et al. Bifunctional Silicotungstic Acid and Tungstophosphoric Acid Impregnated Cu–Zn–Al & Cu–Zn–Zr Catalysts for Dimethyl Ether Synthesis from Syngas. Catal Lett 150, 2744–2761 (2020). https://doi.org/10.1007/s10562-020-03171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03171-6

Keywords

Navigation